Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Energy: Fossil Fuels
Published New reactor could save millions when making ingredients for plastics and rubber from natural gas



A new way to make an important ingredient for plastics, adhesives, carpet fibers, household cleaners and more from natural gas could reduce manufacturing costs in a post-petroleum economy by millions of dollars, thanks to a new chemical reactor.
Published Recyclable reagent and sunlight convert carbon monoxide into methanol



Scientists have demonstrated the selective conversion of carbon dioxide (CO2) into methanol using a cascade reaction strategy. The two-part process is powered by sunlight, occurs at room temperature and at ambient pressure, and employs a recyclable organic reagent that's similar to a catalyst found in natural photosynthesis.
Published Is food waste the key to sustainable, plastic-free diapers and sanitary pads?



Once thrown away, disposable diapers and sanitary pads can take hundreds of years to decompose, because they contain plastics and other synthetic polymers. But now, researchers are replacing these materials with components made from protein biomass that is often discarded. They are sustainable and biodegradable, and they could potentially allow future diapers and pads to be flushed down a toilet or used as fertilizer.
Published Molecular crystal motors move like microbes when exposed to light



At first glance, Rabih Al-Kaysi's molecular motors look like the microscopic worms you'd see in a drop of pond water. But these wriggling ribbons are not alive; they're made from crystallized molecules that perform coordinated movements when exposed to light. With continued development, these tiny machines could be used as drug-delivery robots or engineered into arrays that direct the flow of water around submarines.
Published Sustainable solution for wastewater polluted by dyes used in many industries



Water pollution from dyes used in textile, food, cosmetic and other manufacturing is a major ecological concern with industry and scientists seeking biocompatible and more sustainable alternatives to protect the environment. A new study has discovered a novel way to degrade and potentially remove toxic organic chemicals including azo dyes from wastewater, using a chemical photocatalysis process powered by ultraviolet light.
Published Spectroscopy and theory shed light on excitons in semiconductors



Researchers have made very fast and very precise images of excitons -- in fact, accurate to one quadrillionth of a second and one billionth of a meter. This understanding is essential for developing more efficient materials with organic semiconductors.
Published Harnessing hydrogen at life's origin



A new report uncovers how hydrogen gas, the energy of the future, provided energy in the past, at the origin of life 4 billion years ago. Hydrogen gas is clean fuel. It burns with oxygen in the air to provide energy with no CO2. Hydrogen is a key to sustainable energy for the future. Though humans are just now coming to realize the benefits of hydrogen gas (H2 in chemical shorthand), microbes have known that H2 is good fuel for as long as there has been life on Earth. Hydrogen is ancient energy.
Published Engineers measure pH in cell condensates



In a first for the condensate field, researchers have figured out how nucleolar sub-structures are assembled. This organization gives rise to unique pH profiles within nucleoli, which they measured and compared with the pH of nearby non-nucleolar condensates including nuclear speckles and Cajal bodies.
Published Printed polymer allows researchers to explore chirality and spin interactions at room temperature



A printable organic polymer that assembles into chiral structures when printed has enabled researchers to reliably measure the amount of charge produced in spin-to-charge conversion within a spintronic material at room temperature.
Published The atlas of unburnable oil in the world



In order to limit the increase in global average temperature to 1.5 C, it is essential to drastically reduce carbon dioxide emissions in the atmosphere. This would mean not exploiting most of the existing coal, conventional gas and oil energy resources in regions around the world, according to new research. The study presents the atlas of unburnable oil in the world, a world map designed with environmental and social criteria that warns which oil resources should not be exploited to meet the commitments of the Paris Agreement signed in 2015 to mitigate the effects of climate change.
Published Breakthrough could make automated dosing systems universal



Automated insulin dosing systems combine low-cost blood-glucose monitors with insulin pumps that use precision dosing to continuously regulate blood-sugar and hold it steady. Synthetic biologists have found a way to piggyback on the technology and make it universally applicable for the precision dosing of virtually any drug.
Published New bioengineered protein design shows promise in fighting COVID-19



A recent scientific breakthrough has emerged from the work of researchers aiming to combat SARS-CoV-2, the virus responsible for COVID-19. The study focuses on the design and development of a novel protein capable of binding to the spike proteins found on the surface of the coronavirus. The goal behind this innovative approach is twofold: first, to identify and recognize the virus for diagnostic purposes, and second, to hinder its ability to infect human cells.
Published New simpler and cost-effective forensics test helps identify touch DNA



Research has found a less expensive and easier to use test to learn more about forensic touch DNA. This research has important implications for forensic investigations and being able to identify DNA from a primary contact -- someone who may have committed the crime -- as well as secondary DNA that was inadvertently and indirectly transferred through touch.
Published New computational strategy boosts the ability of drug designers to target proteins inside the membrane



Hitting targets embedded within the cell membrane has long been difficult for drug developers due to the membrane's challenging biochemical properties. Now, chemists have demonstrated new custom-designed proteins that can efficiently reach these 'intramembrane' targets.
Published A simple and robust experimental process for protein engineering



A protein engineering method using simple, cost-effective experiments and machine learning models can predict which proteins will be effective for a given purpose, according to a new study.
Published Scientists develop a rapid gene-editing screen to find effects of cancer mutations



Researchers found a way to screen cancer-linked gene mutations much more easily and quickly than existing approaches, using a variant of CRISPR genome-editing known as prime editing.
Published Researchers develop artificial building blocks of life



For the first time, scientists have developed artificial nucleotides, the building blocks of DNA, with several additional properties in the laboratory.
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Universal tool for tracking cell-to-cell interactions



An updated method for directly observing physical interactions between cells, could allow scientists to one day map every possible cell interaction.
Published New type of nanoparticle makes vaccines more powerful



A type of nanoparticle called a metal organic framework (MOF) could be used to deliver vaccines and act as an adjuvant. Researchers find these particles provoke a strong immune response by activating the innate immune system through cell proteins called toll-like receptors.