Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Energy: Fossil Fuels
Published Major climate benefits with electric aircraft



Researchers have performed the world's first life cycle assessment (LCA) of an existing, two-seater, all-electric aircraft, with a direct comparison to an equivalent fossil fuel-powered one. According to the study, after just one quarter of the expected lifespan of the electric aircraft, the climate impact is lower than that of the fossil fuel-based aircraft, provided that green electricity is used. The downside, however, is increased mineral resource scarcity.
Published New sustainable method for creating organic semiconductors



Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.
Published Groundbreaking discovery enables cost-effective and eco-friendly green hydrogen production



A research team has developed a novel catalyst for the high-efficiency and stable production of high-purity green hydrogen.
Published Physical processes can have hidden neural network-like abilities



A new study shows that the physics principle of 'nucleation' can perform complex calculations that rival a simple neural network. The work may suggest avenues for new ways to think about computation using the principles of physics.
Published Machine learning method speeds up discovery of green energy materials



Researchers have developed a framework that uses machine learning to accelerate the search for new proton-conducting materials, that could potentially improve the efficiency of hydrogen fuel cells.
Published Chemical synthesis: New strategy for skeletal editing on pyridines



A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.
Published Lighting the path: Exploring exciton binding energies in organic semiconductors



Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.
Published Next-generation batteries could go organic, cobalt-free for long-lasting power



In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.
Published Cobalt-free batteries could power cars of the future



A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.
Published A non-proliferation solution: Using antineutrinos to surveil nuclear reactors



Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.
Published Glowing COVID-19 diagnostic test prototype produces results in one minute



Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? In a new study, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.
Published Study reveals a reaction at the heart of many renewable energy technologies



Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Cryo-microscopy reveals nano-sized copy machine implicated in origin of life



RNA is thought to have sparked the origin of life by self-copying. Researchers have now revealed the atomic structure of an 'RNA copy machine' through cryo-EM. This breakthrough sheds light on a primordial RNA world and fuels advancements in RNA nanotechnology and medicine.
Published The power of pause: Controlled deposition for effective and long-lasting organic devices



In organic optoelectronic devices, the control of molecular deposition on thin films is important for optimal surface arrangement and device performance. In a recent study, researchers developed a new method for achieving stable deposition on thin films effectively. They also developed a tool to track real-time potential changes on the surface. These findings are expected to aid the improvement of organic devices, such as organic light-emitting diodes, in terms of efficacy and durability.
Published Using idle trucks to power the grid with clean energy



Researchers are tapping into idled electric vehicles to act as mobile generators and help power overworked and aging electricity grids. After analyzing energy demand on Alberta's power grid during rush hour, the research proposes an innovative way to replenish electrical grids with power generated from fuel cells in trucks.
Published Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production



Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.
Published New catalytic technique creates key component of incontinence drug in less time



Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.
Published Capturing greenhouse gases with the help of light



Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Spying on a shape-shifting protein



Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published Catalytic combo converts CO2 to solid carbon nanofibers



Scientists have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure and could successfully lock carbon away to offset or even achieve negative carbon emissions.