Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Organic Chemistry, Energy: Fossil Fuels

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General
Published

Unveiling molecular origami: A breakthrough in dynamic materials      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of how water molecules move near a metal electrode      (via sciencedaily.com)     Original source 

A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

For this emergent class of materials, 'solutions are the problem'      (via sciencedaily.com)     Original source 

Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Nanoprobe with a barcode      (via sciencedaily.com)     Original source 

Protein-splitting enzymes play an important role in many physiological processes. Such proteases are generally present in an inactive state, only becoming activated under certain conditions. Some are linked to diseases like infections or cancer, making it important to have methods that can selectively detect active proteases. Scientists have introduced a new class of protease-activity sensors: gold nanoparticles equipped with peptide DNA.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Nanoparticle-delivered RNA reduces neuroinflammation in lab tests      (via sciencedaily.com)     Original source 

In mice and human cell cultures, researchers showed that novel nanoparticles can deliver a potential therapy for inflammation in the brain, a prominent symptom in Alzheimer's disease.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of structures resulting from 3D domain swapping in antibody light chains      (via sciencedaily.com)     Original source 

Antibodies hold promise as therapeutic agents. However, their tendency to aggregate poses significant challenges to drug development. In a groundbreaking study, researchers now provide novel insights into the structure formed due to 3D domain swapping of the antibody light chain, the part of the antibody contributing to antigen binding. Their findings are expected to lead to improvements in antibody quality and the development of novel drugs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A fork in the 'rhod': Researchers unveil comprehensive collection of rhodamine-based fluorescent dyes      (via sciencedaily.com)     Original source 

After more than a decade of developing fluorescent probes, a research team has now released the culmination of their years of work: A comprehensive collection of rhodamine-based dyes, the novel chemistry they developed to synthesize them and insights that provide a roadmap for designing future probes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Physics: Optics
Published

Chemists create organic molecules in a rainbow of colors      (via sciencedaily.com)     Original source 

Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers decode aqueous amino acid's potential for direct air capture of CO2      (via sciencedaily.com)     Original source 

Scientists have made a significant stride toward understanding a viable process for direct air capture, or DAC, of carbon dioxide from the atmosphere. This DAC process is in early development with the aim of achieving negative emissions, where the amount of carbon dioxide removed from the envelope of gases surrounding Earth exceeds the amount emitted.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New technique efficiently offers insight into gene regulation      (via sciencedaily.com)     Original source 

Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

PicoRuler: Molecular rulers for high-resolution microscopy      (via sciencedaily.com)     Original source 

A team presents a groundbreaking advance for the world of high-resolution fluorescence microscopy: The innovative method enables researchers for the first time to use biomolecules as molecular rulers to calibrate the latest super-resolution microscopy methods, which have a resolution of just a few nanometers.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers reveal new process for making anhydride chemical compounds      (via sciencedaily.com)     Original source 

A collaborative research team has discovered a new process for making anhydrides that promises improvements in costs and sustainability.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Artificial intelligence paves way for new medicines      (via sciencedaily.com)     Original source 

Researchers have developed an AI model that can predict where a drug molecule can be chemically altered.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Releasing brakes on biocatalysis      (via sciencedaily.com)     Original source 

Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Greener solution powers new method for lithium-ion battery recycling      (via sciencedaily.com)     Original source 

Used lithium-ion batteries from cell phones, laptops and a growing number of electric vehicles are piling up, but options for recycling them remain limited mostly to burning or chemically dissolving shredded batteries. Researchers have improved on approaches that dissolve the battery in a liquid solution in order to reduce the amount of hazardous chemicals used in the process. This simple, efficient and environmentally-friendly solution overcomes the main obstacles presented by previous approaches.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists use oxygen, copper 'scissors' to make cheaper drug treatments possible      (via sciencedaily.com)     Original source 

Researchers have devised a way to produce chemicals used in medicine and agriculture for a fraction of the usual cost. Using oxygen as a reagent and copper as a catalyst to break organic molecules' carbon-carbon bonds and convert them into amines, which are widely used in pharmaceuticals. Traditional metal catalysis uses expensive metals such as platinum, silver, gold and palladium, but the researchers used oxygen and copper -- an abundant base metal.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

New method for determining the water content of water-soluble compounds      (via sciencedaily.com)     Original source 

Researchers have developed a new method for the accurate determination of the water content of water-soluble compounds. This plays a significant role in various areas, including determining drug dosages.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Effect of aerosol particles on clouds and the climate captured better      (via sciencedaily.com)     Original source 

Global measurements and model calculations show that the complex relationship between the chemistry and climate impact of aerosol particles can be successfully captured by a simple formula.