Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Geoscience: Geochemistry
Published A novel multifunctional catalyst turns methane into valuable hydrocarbons



The optimal design of a novel zeolite catalyst enables tandem reaction that turns greenhouse gases into value-added chemicals, report scientists. By tuning the separation between different active sites on the catalyst, they achieved the stepwise conversion of methane into methanol and then to hydrocarbons at mild conditions. These findings will help reduce energy costs and greenhouse gas emissions across various industrial fields.
Published Studying bubbles can lead to more efficient biofuel motors



By studying how bubbles form in a drop of biodiesel, researchers can help future engines get the most energy out of the fuel.
Published Much more than a world first image of radioactive cesium atoms



Thirteen years after the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP), a breakthrough in analysis has permitted a world first: direct imaging of radioactive cesium (Cs) atoms in environmental samples.
Published Green concrete recycling twice the coal ash is built to last



New modelling reveals that low-carbon concrete can recycle double the amount of coal ash compared to current standards, halve the amount of cement required and perform exceptionally well over time.
Published Polyglycerol coating: A breakthrough in safer nanoparticle environmental remediation



Engineered nanoparticles (NPs), commonly utilized in environmental remediation, can pose significant toxicity risks upon ingestion by organisms. Researchers have now devised a solution to this challenge by creating a hydrophilic coating, utilizing polyglycerol (PG) functionalization, for NPs. This coating effectively prevents NP aggregation inside organisms' bodies and facilitates easier passage, thereby reducing accumulation. Applicable to various NPs, the novel surface functionalization approach holds promise for addressing concerns about NP toxicity in environmental remediation.
Published Next-generation sustainable electronics are doped with air



Semiconductors are the foundation of all modern electronics. Now, researchers have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future cheap and sustainable organic semiconductors.
Published Promising new development in solar cell technology



Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.
Published Scientists develop an affordable sensor for lead contamination



A new system could enable simple, low-cost detectors for monitoring water for lead contamination, and potentially other heavy metals as well.
Published Transforming waste carbon dioxide into high-value chemicals with a cost reduction of about 30%



A team of scientists has developed a novel technique to convert carbon dioxide (CO2) from treated flue gas directly into high-value chemicals and fuels. This innovation sidesteps the conventional approach of using high-purity CO2 for electrochemical reduction processes, achieving significant cost savings of about 30%.
Published Avocado pruning residues used to produce more sustainable food packaging



A prototype of a more durable material increases the biodegradability of food packaging, partially replacing its bioplastic with cellulose fibers extracted from the branches and leaves of the avocado tree.
Published Mosaic grassland landscapes are the most beneficial



Grassland provides many services for humans, animals and nature, such as feed production, carbon storage and recreation. Researchers spent two years investigating permanent grassland, its utilization, soils and plant communities in order to quantify the resulting ecosystem services. Grassland performs best when different types of use such as meadows, pastures and unfertilized extensive grassland exist together in a mosaic landscape.
Published How wildfires change soil chemistry



Severe wildfires can drive chemical changes in soil that affect ecosystem recovery and risks to human health. A new study finds broader surveillance and modeling of these changes could inform strategies for protecting lives, property and natural resources, and managing wildlife.
Published How to make ubiquitous plastics biodegradable



Polystyrene is made from styrene building blocks and is the most widely used plastic in terms of volume, for example in packaging. Unlike PET, which can now be produced and recycled using biotechnological methods, the production of polystyrene has so far been a purely chemical process. The plastic can't be broken down by biotechnological means, either. Researchers are looking for ways to rectify this: An international team decoded a bacterial enzyme that plays a key role in styrene degradation. This paves the way for biotechnological application.
Published Today's world: Fastest rate of carbon dioxide rise over the last 50,000 years



Today's rate of atmospheric carbon dioxide increase is 10 times faster than at any other point in the past 50,000 years, researchers have found through a detailed chemical analysis of ancient Antarctic ice.
Published The price tag of phasing-out coal



Coal phase-out is necessary to solve climate change, but can have negative impacts on workers and local communities dependent on coal for their livelihoods. Researchers have studied government plans for coal phase-out around the world and discovered that more than half of such plans include monetary compensation to affected parties. This planned compensation globally amounts to USD 200 billion, but it excludes China and India, the two largest users of coal that currently do not have phase-out plans. The study shows that if China and India decide to phase out coal as fast as needed to reach the Paris climate targets and pay similar compensation, it would cost upwards of USD 2 trillion.
Published Research explores ways to mitigate the environmental toxicity of ubiquitous silver nanoparticles



Researchers have taken a key step toward closing the silver nanoparticles knowledge gap with a study that indicates the particles' shape and surface chemistry play key roles in how they affect aquatic ecosystems.
Published Clues from deep magma reservoirs could improve volcanic eruption forecasts



New research into molten rock 20km below the Earth's surface could help save lives by improving the prediction of volcanic activity.
Published Scientists unlock key to breeding 'carbon gobbling' plants with a major appetite



The discovery of how a critical enzyme 'hidden in nature's blueprint' works sheds new light on how cells control key processes in carbon fixation, a process fundamental for life on Earth. The discovery could help engineer climate resilient crops capable of sucking carbon dioxide from the atmosphere more efficiently, helping to produce more food in the process.
Published New light shed on carboxysomes in key discovery that could boost photosynthesis



A research team has discovered how carboxysomes, carbon-fixing structures found in some bacteria and algae, work. The breakthrough could help scientists redesign and repurpose the structures to enable plants to convert sunlight into more energy, paving the way for improved photosynthesis efficiency, potentially increasing the global food supply and mitigating global warming.
Published New 'forever chemical' cleanup strategy discovered



A method has been discovered to treat water heavily contaminated with unhealthful forever chemicals, known by chemists as PFAS or poly- and per-fluoroalkyl substances. It involves treating heavily contaminated water with ultraviolet (UV) light, sulfite, and a process called electrochemical oxidation. It breaks up strong fluorine-to-carbon bonds in the PFAS compounds and other concentrated organic compounds in heavily polluted water. The reaction also occurs at room temperature without a need for additional heat or high pressure. This method is expected to be useful in cleanups of PFAS pollution from decades of fire suppressant foam use at military facilities.