Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Engineering: Biometric, Geoscience: Geochemistry
Published What turned Earth into a giant snowball 700 million years ago? Scientists now have an answer



Inspired during field work in South Australia's Flinders Ranges, geoscientists have proposed that all-time low volcanic carbon dioxide emissions triggered a 57-million-year-long global 'Sturtian' ice age.
Published Green doesn't always mean clean: Cleaning products urgently need better regulation, researchers warn



Researchers say there needs to be better regulation and more guidance for consumers about how safe cleaning products really are.
Published New study sheds new light on forests' role in climate and water cycle



Forests, which cover a third of Earth's land surface, are pivotal in carbon storage and the water cycle, though the full scope of their impact remains to be fully understood. In a new study, researchers provide new insights into the complex role forests play in the climate system and water cycle.
Published Inexpensive, carbon-neutral biofuels are finally possible



When it comes to making fuel from plants, the first step has always been the hardest -- breaking down the plant matter. A new study finds that introducing a simple, renewable chemical to the pretreatment step can finally make next-generation biofuel production both cost-effective and carbon neutral.
Published 3D printed nanocellulose upscaled for green architectural applications



For the first time, a hydrogel material made of nanocellulose and algae has been tested as an alternative, greener architectural material. The study shows how the abundant sustainable material can be 3D printed into a wide array of architectural components, using much less energy than conventional construction methods.
Published MXene-coated devices can guide microwaves in space and lighten the payload



One of the most important components of satellites that enable telecommunication is the waveguide, which is a metal tube for guiding radio waves. It is also one of the heaviest payloads satellites carry into orbit. As with all space technology, reducing weight means reducing the amount of expensive and greenhouse gas-producing fuel it takes to launch a rocket, or increasing the number of devices carried by the same rocket to space. Researchers are trying to lighten the load by creating and testing a waveguide made from 3D-printed polymers coated with a conductive nanomaterial called MXene.
Published Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products



Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.
Published How plants obtain nitrogen by supplying iron to symbiotic bacteria



Researchers have discovered peptide factors that function in the shoot and root systems to transport iron into the root nodules colonized by nitrogen-fixing bacteria. Moreover, these peptide factors regulate nitrogen homeostasis by maintaining a balance between nitrogen and iron concentrations in plants without rhizobial symbiosis.
Published Ammonia attracts the shipping industry, but researchers warn of its risks



Switching to ammonia as a marine fuel, with the goal of decarbonization, can instead create entirely new problems. This is shown in a study where researchers carried out life cycle analyses for batteries and for three electrofuels including ammonia. Eutrophication and acidification are some of the environmental problems that can be traced to the use of ammonia -- as well as emissions of laughing gas, which is a very potent greenhouse gas.
Published Small but mighty -- study highlights the abundance and importance of the ocean's tiniest inhabitants



New research sheds light on tiny plankton, which measure less than 0.02mm in diameter but can make up more than 70% of the plankton biomass found in the ocean.
Published Vitamin B12 adaptability in Antarctic algae has implications for climate change, life in the Southern Ocean



The algae P. antarctica has two forms of the enzyme that makes the amino acid methionine, one needing B12, and one that is slower, but doesn't need it. This means it has the ability to adapt and survive with low B12 availability. The presence of the MetE gene in P. antarctica gives the algae the ability to adapt to lower vitamin B12 availability, giving it a potential advantage to bloom in the early austral spring when bacterial production is low. P. antarctica takes in the CO2 and releases oxygen through photosynthesis. Understanding its ability to grow in environments with low vitamin B12 availability can help climate modelers make more accurate predictions.
Published New technology unscrambles the chatter of microbes



Researchers have developed a new search tool to that can match microbes to the metabolites they produce with no prior knowledge, an innovation that could transform our understanding of both human health and the environment.
Published Understanding how soil traps carbon



With 2,500 billion tons of carbon, soil is one of Earth's largest carbon sinks. Researchers used experiments and computational modeling to study interactions between carbon molecules and clay minerals in soil. New research gives clues to why some plant-based carbon molecules are sequestered in soils but others are respired as CO2. Findings show that electrostatic charges, surrounding nutrients in soil and competition from other molecules all play roles in facilitating carbon trapping.
Published A sleeker facial recognition technology tested on Michelangelo's David



Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report on a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo's David just as well as an existing smartphone system.
Published How leafcutter ants cultivate a fungal garden to degrade plants and provide insights into future biofuels



Scientists developed a new method to map exactly how a fungus works with leafcutter ants in a complex microbial community to degrade plant material at the molecular level. The team's insights are important for biofuels development.
Published Permafrost alone holds back Arctic rivers -- and a lot of carbon



A new study provides the first evidence that the Arctic's frozen soil is the dominant force shaping Earth's northernmost rivers, confining them to smaller areas and shallower valleys than rivers to the south. But as climate change weakens Arctic permafrost, the researchers calculate that every 1 degree Celsius of global warming could release as much carbon as 35 million cars emit in a year as polar waterways expand and churn up the thawing soil.
Published Tidal landscapes a greater carbon sink than previously thought



Mangroves and saltmarshes sequester large amounts of carbon, mitigating the greenhouse effect. New research shows that these environments are perhaps twice as effective as previously thought.
Published Increased temperature difference between day and night can affect all life on earth



Researchers have discovered a change in what scientists already knew about global warming dynamics. It had been widely accepted since the 1950s that global temperature rises were not consistent throughout the day and night, with greater nighttime warming being observed. However, the recent study reveals a shift in dynamics: with greater daytime warming taking place since the 1990s. This shift means that the temperature difference between day and night is widening, potentially affecting all life on Earth.
Published Intensifying the production of high-value compounds from industrial waste



New research demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. The process relies on a hybrid approach combining fundamental physical organic chemistry and applied flow process technology. Two industrial wastes are thus converted into glycerol carbonate, a biosourced rising star with high added-value.
Published Microbial research unravels a global nitrogen mystery



A research findings show that different AOM lineages employ different regulatory strategies for ammonia or urea utilization, thereby minimizing direct competition with one another and allowing for coexistence.