Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Engineering: Biometric, Geoscience: Geochemistry
Published Zooplankton in ocean and freshwater are rapidly escalating the global environmental threat of plastics



A collaborative research team has recently revealed that rotifers, a kind of microscopic zooplankton common in both fresh and ocean water around the world, are able to chew apart microplastics, breaking them down into even smaller, and potentially more dangerous, nanoplastics -- or particles smaller than one micron. Each rotifer can create between 348,000 -- 366,000 per day, leading to uncountable swarms of nanoparticles in our environment.
Published A different take on phosphorus: Bacteria use organic phosphorus and release methane in the process



Some bacteria are able to tap into unusual sources of nutrients in the surface water of the oceans. This enables them to increase their primary production and extract more carbon dioxide from the atmosphere. In doing so, however, they release the potent greenhouse gas methane.
Published Maps reveal biochar's potential for mitigating climate change



Twelve countries have the technical ability to sequester over 20% of their current total greenhouse gas emissions by converting crop residues to biochar. Bhutan leads the way with the potential to sequester 68% of its emissions in the form of biochar, followed by India, at 53%.
Published Window to the past: New microfossils suggest earlier rise in complex life



Microfossils may capture a jump in the complexity of life that coincided with the rise of oxygen in Earth's atmosphere and oceans, according to an international team of scientists.
Published 'Biodiversity time machine' provides insights into a century of loss



AI analysis shows pollution levels, extreme weather events and increasing temperatures devastates biodiversity in freshwater lakes.
Published Energy transition: A super-model to guide policy makers



How can we ensure that an energy policy will achieve its objectives? To find out, scientists and public authorities can rely on computer models of varying degrees of accuracy. However, these models have a number of limitations, including the fact that they are not very effective for generating projections on a regional scale. A team has now designed a super-model to simulate the spread of three green technologies.
Published How to eat our way out of the climate crisis



Researchers conducted a study to determine if replacing dietary fats from palm oil, soy and other agricultural crops with fats created synthetically in chemical or biological processes could help reduce climate change-causing greenhouse gases. The researchers' analysis finds a reduction in carbon emissions and other benefits, such the opening of agricultural lands to reforestation which benefits biodiversity and creates a carbon sink.
Published New approach to water electrolysis for green hydrogen



Scientists have pioneered a novel approach to water electrolysis catalysts for green hydrogen production.
Published Predicting saltwater intrusion into groundwater using Plymouth, Mass. as test case



As the world warms and ice sheets melt, the ocean continually rises. The greater Boston area can expect to see between one and six feet of sea level rise by 2100, according to recent estimates. To find out what this rise might mean for freshwater supplies, a team of hydrogeologists developed an innovative new model that can not only predict saltwater intrusion over the next 75 years, but also pinpoint the main sources of salt contamination today -- road salt and human development.
Published Stronger, stretchier, self-healing plastic



An innovative plastic, stronger and stretchier than the current standard type and which can be healed with heat, remembers its shape and partially biodegradable, has been developed. They created it by adding the molecule polyrotaxane to an epoxy resin vitrimer, a type of plastic. Named VPR, the material can hold its form and has strong internal chemical bonds at low temperatures.
Published Self-powered microbial fuel cell biosensor for monitoring organic freshwater pollution



Biodegradable waste from plant and animal sources released into freshwater ecosystems is a significant environmental concern. Nonetheless, current methods for assessing water quality seem more or less impractical due to their complexity and high costs. In a promising development, a team of researchers has successfully constructed a self-sustaining and buoyant biosensor using inexpensive carbon-based materials for monitoring water quality at the inlets of freshwater lakes and rivers.
Published Investigators examine shifts in coral microbiome under hypoxia



A new study provides the first characterization of the coral microbiome under hypoxia, insufficient oxygen in the water.
Published Study links changes in global water cycle to higher temperatures



A new study takes an important step toward reconstructing a global history of water over the past 2,000 years. Using geologic and biologic evidence preserved in natural archives -- including 759 different paleoclimate records from globally distributed corals, trees, ice, cave formations and sediments -- the researchers showed that the global water cycle has changed during periods of higher and lower temperatures in the recent past.
Published Human emissions increased mercury in the atmosphere sevenfold



Researchers estimated that before humans started pumping mercury into the atmosphere, it contained on average about 580 megagrams of mercury. However, in 2015, independent research that looked at all available atmospheric measurements estimated the atmospheric mercury reservoir was about 4,000 Mg -- nearly 7 times larger than the natural condition estimated in this study.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Humans are disrupting natural 'salt cycle' on a global scale, new study shows



A new paper revealed that human activities are making Earth's air, soil and freshwater saltier, which could pose an 'existential threat' if current trends continue. Geologic and hydrologic processes bring salts to Earth's surface over time, but human activities such as mining and land development are rapidly accelerating this natural 'salt cycle.'
Published Microplastics' shape determines how far they travel in the atmosphere



Micron-size microplastic debris can be carried by the jet stream across oceans and continents, and their shape plays a crucial role in how far they travel.
Published How common desert shrub efficiently harvests water from the air



A team of scientists has revealed the mechanism a desert plant native to the United Arab Emirates uses to capture moisture from the desert air in order to survive.
Published Engineers develop an efficient process to make fuel from carbon dioxide



Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.
Published How robots can help find the solar energy of the future



To quickly and accurately characterize prospective materials for use in solar energy, researchers built an automated system to perform laboratory experiments and used machine learning to help analyze the data they recorded. Their goal is to identify semiconductor materials for use in photovoltaic solar energy, which are highly efficient and have low toxicity.