Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Engineering: Biometric
Published Ancient medicine blends with modern-day research in new tissue regeneration method



For centuries, civilizations have used naturally occurring, inorganic materials for their perceived healing properties. Egyptians thought green copper ore helped eye inflammation, the Chinese used cinnabar for heartburn, and Native Americans used clay to reduce soreness and inflammation. Flash forward to today, and researchers are still discovering ways that inorganic materials can be used for healing. A new article explains that cellular pathways for bone and cartilage formation can be activated in stem cells using inorganic ions. Another recent article explores the usage of mineral-based nanomaterials, specifically 2D nanosilicates, to aid musculoskeletal regeneration.
Published Designing environments that are robot-inclusive



To overcome issues associated with real-life testing, researchers successfully demonstrated the use of digital twin technology within robot simulation software in assessing a robot's suitability for deployment in simulated built environments.
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published Portable pathology passes the test



On-site pathology tests for infectious diseases in rural and remote locations can be just as reliable and accurate as tests carried out in a hospital laboratory, a new report shows.
Published Combining simulations and experiments to get the best out of Fe3Al



Researchers combined computer simulations and transmission electron microscopy experiments to better understand the ordering mobility and formation of microstructure domains in Fe3Al alloy. They were able to correlate structural changes with heat treatment to understand how particular mechanical behavior can be achieved. This is expected to allow the superelastic properties of Fe3Al to harnessed for the 3D printing of construction materials for absorbing seismic activity.
Published AIM algorithm enhances super-resolution microscope images in real time



When trying to measure molecular structures with nanometer precision, every bit of noise shows up in the data: someone walking past the microscope, tiny vibrations in the building and even the traffic outside. A new processing technique removes noise from optical microscope data in real time, allowing scientists to track individual molecules over 10 times more precisely than was possible before.
Published Editing without 'cutting': Molecular mechanisms of new gene-editing tool revealed



New research has determined the spatial structure of various processes of a novel gene-editing tool called 'prime editor.' Functional analysis based on these structures also revealed how a 'prime editor' could achieve reverse transcription, synthesizing DNA from RNA, without 'cutting' both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments.
Published Public have no difficulty getting to grips with an extra thumb, study finds



Researchers have shown that members of the public have little trouble in learning very quickly how to use a third thumb -- a controllable, prosthetic extra thumb -- to pick up and manipulate objects. The team tested the robotic device on a diverse range of participants, which they say is essential for ensuring new technologies are inclusive and can work for everyone.
Published Polymeric films protect anodes from sulfide solid electrolytes



Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.
Published Harnessing green energy from plants depends on their circadian rhythms



Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.
Published 'Invisible tweezers' use robotics and acoustic energy to achieve what human hands cannot



Undergoing surgery is seldom a pleasant experience, and it can sometimes be highly invasive. Surgical procedures have evolved steadily over the centuries, growing with the knowledge of anatomy and biology. Innovative methods have also been bolstered with new tools, and a growth in the use of robotics since the 1980s has moved health care forward significantly.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Observing mammalian cells with superfast soft X-rays



Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.
Published Charting a pathway to next-gen biofuels



From soil to sequestration, researchers have modeled what a supply chain for second-generation biofuels might look like in the midwestern United States.
Published Team enhances stereotactic neurosurgery precision using MRI-guided multi-stage robotic positioner



A research team developed an interactive multi-stage robotic positioner specifically designed for magnetic resonance imaging (MRI)-guided stereotactic neurosurgery.
Published Producing novel liquid crystals by stacking antiaromatic units



In a recent study, researchers developed modified norcorrole molecules whose side chains favored the formation of columnar -stacking structures. Using these compounds, they produced liquid crystals with high electrical conductivity and thermotropic properties. Their findings open up new design avenues for materials useful in electronics, sensing, optics, and biomedicine.
Published Wearable devices get signal boost from innovative material



An international team have developed a new material that moves like skin while preserving signal strength in electronics. The technology could enable the development of next-generation wearable devices with continuous, consistent wireless and battery-free functionality.
Published Wearable ultrasound patch enables continuous, non-invasive monitoring of cerebral blood flow



Engineers have developed a wearable ultrasound patch that can offer continuous, non-invasive monitoring of blood flow in the brain. The soft and stretchy patch can be comfortably worn on the temple to provide three-dimensional data on cerebral blood flow--a first in wearable technology.
Published Scientists learn how to control muscles with light



Researchers developed a way to help people with amputation or paralysis regain limb control. Their optogenetic technique could offer more precise control over muscle contraction, along with a dramatic decrease in muscle fatigue.
Published Researchers design new metal-free porous framework materials



Researchers have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.