Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Engineering: Graphene
Published A new world of 2D material is opening up



Materials that are incredibly thin, only a few atoms thick, exhibit unique properties that make them appealing for energy storage, catalysis and water purification. Researchers have now developed a method that enables the synthesis of hundreds of new 2D materials.
Published New bioengineered protein design shows promise in fighting COVID-19



A recent scientific breakthrough has emerged from the work of researchers aiming to combat SARS-CoV-2, the virus responsible for COVID-19. The study focuses on the design and development of a novel protein capable of binding to the spike proteins found on the surface of the coronavirus. The goal behind this innovative approach is twofold: first, to identify and recognize the virus for diagnostic purposes, and second, to hinder its ability to infect human cells.
Published New simpler and cost-effective forensics test helps identify touch DNA



Research has found a less expensive and easier to use test to learn more about forensic touch DNA. This research has important implications for forensic investigations and being able to identify DNA from a primary contact -- someone who may have committed the crime -- as well as secondary DNA that was inadvertently and indirectly transferred through touch.
Published New computational strategy boosts the ability of drug designers to target proteins inside the membrane



Hitting targets embedded within the cell membrane has long been difficult for drug developers due to the membrane's challenging biochemical properties. Now, chemists have demonstrated new custom-designed proteins that can efficiently reach these 'intramembrane' targets.
Published A simple and robust experimental process for protein engineering



A protein engineering method using simple, cost-effective experiments and machine learning models can predict which proteins will be effective for a given purpose, according to a new study.
Published Spiral wrappers switch nanotubes from conductors to semiconductors and back



By wrapping a carbon nanotube with a ribbon-like polymer, researchers were able to create nanotubes that conduct electricity when struck with low-energy light that our eyes cannot see. In the future, the approach could make it possible to optimize semiconductors for applications ranging from night vision to new forms of computing.
Published Scientists develop a rapid gene-editing screen to find effects of cancer mutations



Researchers found a way to screen cancer-linked gene mutations much more easily and quickly than existing approaches, using a variant of CRISPR genome-editing known as prime editing.
Published Researchers develop artificial building blocks of life



For the first time, scientists have developed artificial nucleotides, the building blocks of DNA, with several additional properties in the laboratory.
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Universal tool for tracking cell-to-cell interactions



An updated method for directly observing physical interactions between cells, could allow scientists to one day map every possible cell interaction.
Published New type of nanoparticle makes vaccines more powerful



A type of nanoparticle called a metal organic framework (MOF) could be used to deliver vaccines and act as an adjuvant. Researchers find these particles provoke a strong immune response by activating the innate immune system through cell proteins called toll-like receptors.
Published Key advance toward removing common herbicide from groundwater



Chemists are closing in on a new tool for tackling the global problem of weedkiller-tainted groundwater.
Published Aluminum nanoparticles make tunable green catalysts



A nanotechnology pioneer has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published Researchers closing in on genetic treatments for hereditary lung disease, vision loss



Researchers who work with tiny drug carriers known as lipid nanoparticles have developed a new type of material capable of reaching the lungs and the eyes, an important step toward genetic therapy for hereditary conditions like cystic fibrosis and inherited vision loss.
Published 'Like a lab in your pocket' -- new test strips raise game in gene-based diagnostics



Biosensing technology developed by engineers has made it possible to create gene test strips that rival conventional lab-based tests in quality.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Turning waste into gold



Researchers have recovered gold from electronic waste. Their highly sustainable new method is based on a protein fibril sponge, which the scientists derive from whey, a food industry byproduct.
Published How molecular 'handedness' emerged in early biology



Chemists fill a major gap in origin-of-life theories.