Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Engineering: Graphene
Published BESSY II: Local variations in the atomic structure of High-Entropy Alloys



High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials.
Published Locusts' sense of smell boosted with custom-made nanoparticles



Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.
Published Coal-based product could replace sand in concrete



A new study found that graphene derived from metallurgical coke, a coal-based product, through flash Joule heating could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete.
Published Polymer power: Researchers enhance the safety of lithium batteries



Lithium-ion batteries face safety concerns as a result of internal separator issues which often lead to short circuits. Scientists have now developed a method to improve the stability and properties of separators with a layer of silicon dioxide and other functional molecules. Batteries employing these separators demonstrated improved performance and reduced growth of disruptive root-like structures, paving the way for high-safety batteries that can aid the adoption of electric vehicles and advanced energy storage systems.
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published Potential use of topological magnets for magneto-thermoelectric energy conversion



Scientists are eager to harness the unique electrical properties of topological magnets for advancing thermoelectric materials. A collaborative research group has successfully induced positive and negative polarities, unlocking the potential for generating thermoelectric energy from materials with topological magnet properties.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Long live the graphene valley state



Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.
Published Advancement in thermoelectricity could light up the Internet of Things



Researchers have improved the efficiency of heat-to-electricity conversion in gallium arsenide semiconductor microstructures. By judicious spatial alignment of electrons within a two-dimensional electron gas system with multiple subbands, one can substantially enhance the power factor compared with previous iterations of analogous systems. This work is an important advance in modern thermoelectric technology and will benefit the global integration of the Internet of Things.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Innovative graphene-based implantable technology paves the way for high-precision therapeutic applications



A new study presents an innovative graphene-based neurotechnology with the potential for a transformative impact in neuroscience and medical applications.
Published Reflective materials and irrigated trees: Study shows how to cool one of the world's hottest cities by 4.5°C



A combination of cooling technologies and techniques could reduce the temperature and energy needs of Riyadh, Saudi Arabia.
Published Scientists use heat to create transformations between skyrmions and antiskyrmions



In an experiment that could help the development of new spintronics devices with low energy consumption, researchers have used heat and magnetic fields to create transformations between spin textures -- magnetic vortices and antivortices known as skyrmions and antiskyrmions -- in a single crystal thin plate device. Importantly, they achieved this at room temperature.
Published Spying on a shape-shifting protein



Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published Transparent brain implant can read deep neural activity from the surface



Researchers have developed a neural implant that provides information about activity deep inside the brain while sitting on its surface. The implant is made up of a thin, transparent and flexible polymer strip that is packed with a dense array of graphene electrodes. The technology, tested in transgenic mice, brings the researchers a step closer to building a minimally invasive brain-computer interface (BCI) that provides high-resolution data about deep neural activity by using recordings from the brain surface.
Published First direct imaging of small noble gas clusters at room temperature



Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.
Published Functional semiconductor made from graphene



Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.
Published Better microelectronics from coal



Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.
Published Computational method discovers hundreds of new ceramics for extreme environments



If you have a deep-seated, nagging worry over dropping your phone in molten lava, you're in luck. Materials scientists have developed a method for rapidly discovering a new class of materials with heat and electronic tolerances so rugged that they that could enable devices to function at several thousands of degrees Fahrenheit.