Showing 20 articles starting at article 321

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Engineering: Graphene

Return to the site home page

Chemistry: General Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

World may have crossed solar power 'tipping point'      (via sciencedaily.com)     Original source 

The world may have crossed a 'tipping point' that will inevitably make solar power our main source of energy, new research suggests.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Decontamination method zaps pollutants from soil      (via sciencedaily.com)     Original source 

A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Physics: General
Published

Harnessing molecular power: Electricity generation on the nanoscale      (via sciencedaily.com)     Original source 

Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water
Published

Solar design would harness 40% of the sun's heat to produce clean hydrogen fuel      (via sciencedaily.com)     Original source 

Engineers have designed a system that can efficiently produce 'solar thermochemical hydrogen.' It harnesses the sun's heat to split water and generate hydrogen -- a clean fuel that emits no greenhouse gas emissions. 

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology
Published

An electrical switch to control chemical reactions      (via sciencedaily.com)     Original source 

New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society's needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group has discovered how to use an external electric field to control and accelerate a chemical reaction, like a 'switch'. This work could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.

Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Geochemistry
Published

Revolutionizing energy storage: Metal nanoclusters for stable lithium--sulfur batteries      (via sciencedaily.com)     Original source 

Lithium–sulfur batteries (LSBs) offer a higher energy storage potential. However, issues like formation of lithium polysulfides and lithium dendrites lead to capacity loss and raise safety concerns. Now, researchers have developed a graphene separator embedded with platinum-doped gold nanoclusters, which enhance lithium-ion transport and facilitate redox reactions. This breakthrough addresses the long-standing issues associated with LSBs, setting the stage for their commercialization.

Engineering: Graphene Physics: General
Published

Scientists discover 'flipping' layers in heterostructures to cause changes in their properties      (via sciencedaily.com)     Original source 

Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).

Energy: Technology
Published

Magnetoelectric material can reconnect severed nerves      (via sciencedaily.com)     Original source 

Neuroengineers designed the first self-rectifying magnetoelectric material and showed it can not only precisely stimulate neurons remotely but also reconnect a broken sciatic nerve in a rat model.

Energy: Technology
Published

Wireless, battery-free electronic 'stickers' gauge forces between touching objects      (via sciencedaily.com)     Original source 

Engineers developed electronic 'stickers' that measure the force exerted by one object upon another. The force stickers are wireless, run without batteries and fit in tight spaces, making them versatile for a wide range of applications, from surgical robots to smart implants and inventory tracking.

Chemistry: Biochemistry Chemistry: General Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Modular dam design could accelerate the adoption of renewable energy      (via sciencedaily.com)     Original source 

Scientists have developed a new modular steel buttress dam system designed to resolve energy storage issues hindering the integration of renewable resources into the energy mix. The new modular steel buttress dam system facilitates the rapid construction of paired reservoir systems for grid-scale energy storage and generation using closed-loop pumped storage hydropower, cutting dam construction costs by one-third and reducing construction schedules by half.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Chemistry: Thermodynamics Energy: Technology Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Comfort with a smaller carbon footprint      (via sciencedaily.com)     Original source 

Researchers have developed a data-driven AI algorithm for controlling the heating and cooling of an office building. The system does not require ambient sensors or specific knowledge of the building's rooms. During heating operations, the system was able to achieve energy savings of up to 30%, which can represent significant reductions to cost and environmental impact.

Biology: General Biology: Zoology Computer Science: Artificial Intelligence (AI) Energy: Technology Engineering: Robotics Research
Published

Insect cyborgs: Towards precision movement      (via sciencedaily.com)     Original source 

Insect cyborgs may sound like something straight out of the movies, but hybrid insect computer robots, as they are scientifically called, could pioneer a new future for robotics. It involves using electrical stimuli to control an insect’s movement. Now, an international research group has conducted a study on the relationship between electrical stimulation in stick insects' leg muscles and the resulting torque (the twisting force that causes the leg to move). 

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Graphene oxide reduces the toxicity of Alzheimer's proteins      (via sciencedaily.com)     Original source 

A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.

Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Disaster-proofing sustainable neighborhoods requires thorough long-term planning      (via sciencedaily.com)     Original source 

Engineers and scientists look at how thoughtful design can reduce a sustainably-designed neighborhood’s energy vulnerability during power disruptions, as well as which design characteristics are needed if and when local populations need to move to shelters. Researchers  analyzed the design and energy characteristics of particular kinds of buildings and neighborhoods to assess their vulnerabilities and their access to alternative and renewable energy sources. The authors use several scenarios involving different lengths of power disruption to see which kind of response is most beneficial to the populations affected.

Biology: Biochemistry Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

Metal-loving microbes could replace chemical processing of rare earths      (via sciencedaily.com)     Original source 

Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers dynamically tune friction in graphene      (via sciencedaily.com)     Original source 

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Capturing CO2 with electricity: A microbial enzyme inspires electrochemistry      (via sciencedaily.com)     Original source 

Humanity continuously emits greenhouse gases and thereby worsens global warming. Increasing research efforts go into developing strategies to convert these gases, such as carbon dioxide (CO2), into valuable products. CO2 accumulates dramatically over the years and is chemically very stable, thus challenging to transform. Yet, for billions of years, some microbes have actively captured CO2 using highly efficient enzymes. Scientists have now isolated one of these enzymes. When the enzyme was electronically branched on an electrode, they observed the conversion of CO2 to formate with perfect efficiency. This phenomenon will inspire new CO2-fixation systems because of its remarkable directionality and rates.

Chemistry: General Energy: Batteries Energy: Technology
Published

A new twist on rechargeable battery performance      (via sciencedaily.com)     Original source 

Rechargeable battery performance could be improved by a new understanding of how they work at the molecular level. Researchers upend what's known about how rechargeable batteries function.

Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Milestone for novel atomic clock      (via sciencedaily.com)     Original source 

An international research team has taken a decisive step toward a new generation of atomic clocks. The researchers have created a much more precise pulse generator based on the element scandium, which enables an accuracy of one second in 300 billion years -- that is about a thousand times more precise than the current standard atomic clock based on caesium.