Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Engineering: Graphene

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

When does a conductor not conduct?      (via sciencedaily.com)     Original source 

A new study uncovers a switchable, atomically-thin metal-organic material that could be used in future low-energy electronic technologies. The study shows that electron interactions in this material create an unusual electrically-insulating phase in which electrons are 'frozen'. By reducing the population of electrons, the authors are able to unfreeze the remaining electrons, allowing for controlled transitions between insulating and electrically-conductive phases: the key to the on-off binary operations of classical computing.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Getting dynamic information from static snapshots      (via sciencedaily.com)     Original source 

Researchers have created TopicVelo, a powerful new method of using the static snapshots from scRNA-seq to study how cells and genes change over time. This will help researchers better study how embryos develop, cells differentiate, cancers form, and the immune system reacts.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

More efficient molecular motor widens potential applications      (via sciencedaily.com)     Original source 

Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.

Biology: Botany Chemistry: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Scientists released long-term data of ground solar-induced fluorescence to improve understanding of canopy-level photosynthesis      (via sciencedaily.com)     Original source 

A recent study utilized ground-based instruments to measure solar-induced fluorescence (SIF) that reflect plant health and photosynthesis.

Chemistry: General Chemistry: Organic Chemistry Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

The longer spilled oil lingers in freshwater, the more persistent compounds it produces      (via sciencedaily.com)     Original source 

Oil is an important natural resource for many industries, but it can lead to serious environmental damage when accidentally spilled. While large oil spills are highly publicized, every year there are many smaller-scale spills into lakes, rivers and oceans. The longer that oil remains in freshwater, the more chemical changes it undergoes, creating products that can persist in the environment.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces      (via sciencedaily.com)     Original source 

Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.

Chemistry: General Engineering: Graphene
Published

Rubber-like stretchable energy storage device fabricated with laser precision      (via sciencedaily.com)     Original source 

Scientists use laser ablation technology to develop a deformable micro-supercapacitor.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

A chemical mystery solved -- the reaction explaining large carbon sinks      (via sciencedaily.com)     Original source 

A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Condensed matter physics: Novel one-dimensional superconductor      (via sciencedaily.com)     Original source 

In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Researchers create artificial cells that act like living cells      (via sciencedaily.com)     Original source 

Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.

Chemistry: General Engineering: Nanotechnology Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Laser-treated cork absorbs oil for carbon-neutral ocean cleanup      (via sciencedaily.com)     Original source 

Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Magnetic with a pinch of hydrogen      (via sciencedaily.com)     Original source 

Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Engineering: Graphene
Published

More economical and sustainable rechargeable batteries      (via sciencedaily.com)     Original source 

Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New copper-catalyzed C-H activation strategy      (via sciencedaily.com)     Original source 

Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Development of organic semiconductors featuring ultrafast electrons      (via sciencedaily.com)     Original source 

Collaboration has led to the successful observation of these ultrafast electrons within conducting two-dimensional polymers.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General
Published

Accelerating the discovery of new materials via the ion-exchange method      (via sciencedaily.com)     Original source 

Researchers have unveiled a new means of predicting how to synthesize new materials via the ion-exchange. Based on computer simulations, the method significantly reduces the time and energy required to explore for inorganic materials.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing
Published

Energy scientists unravel the mystery of gold's glow      (via sciencedaily.com)     Original source 

EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.

Chemistry: General Energy: Batteries Energy: Technology
Published

Mess is best: Disordered structure of battery-like devices improves performance      (via sciencedaily.com)     Original source 

The energy density of supercapacitors -- battery-like devices that can charge in seconds or a few minutes -- can be improved by increasing the 'messiness' of their internal structure. Researchers used experimental and computer modelling techniques to study the porous carbon electrodes used in supercapacitors. They found that electrodes with a more disordered chemical structure stored far more energy than electrodes with a highly ordered structure.

Chemistry: Thermodynamics Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Atom-by-atom: Imaging structural transformations in 2D materials      (via sciencedaily.com)     Original source 

Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.