Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Rewriting the evolutionary history of critical components of the nervous system      (via sciencedaily.com)     Original source 

A new study has rewritten the conventionally understood evolutionary history of certain ion channels -- proteins critical for electrical signaling in the nervous system. The study shows that the Shaker family of ion channels were present in microscopic single cell organisms well before the common ancestor of all animals and thus before the origin of the nervous system.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Starvation and adhesion drive formation of keratinocyte patterns in skin      (via sciencedaily.com)     Original source 

Cell-cell adhesion-induced patterning in keratinocytes can be explained by just starvation and strong adhesion researchers find.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Physics: General
Published

How mortal filaments' self-assemble and maintain order: Align or die      (via sciencedaily.com)     Original source 

A previously unknown mechanism of active matter self-organization essential for bacterial cell division follows the motto 'dying to align': Misaligned filaments 'die' spontaneously to form a ring structure at the center of the dividing cell. The work could find applications in developing synthetic self-healing materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Biology: Zoology
Published

A new mechanism for shaping animal tissues      (via sciencedaily.com)     Original source 

A key question that remains in biology and biophysics is how three-dimensional tissue shapes emerge during animal development. Research teams have now found a mechanism by which tissues can be 'programmed' to transition from a flat state to a three-dimensional shape.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Bacteria encode hidden genes outside their genome--do we?      (via sciencedaily.com)     Original source 

A 'loopy' discovery in bacteria is raising fundamental questions about the makeup of our own genome -- and revealing a potential wellspring of material for new genetic therapies.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Biology: Zoology Ecology: Nature Environmental: General Geoscience: Environmental Issues
Published

Researchers make breakthrough in understanding species abundance      (via sciencedaily.com)     Original source 

The key finding was that temperature and genome size, not body size, had the greatest influence on the maximum population growth rate of the diatoms. Yet body size still mattered in colder latitudes, conserving Bermann's Rule.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Viral defense protein speeds up female stem cell production      (via sciencedaily.com)     Original source 

A viral defense mechanism can be used to accelerate the creation of female stem cell lines in mice. The findings can boost efforts in medical research, drug testing, and regenerative therapies, particularly for women and individuals with two X chromosomes.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular
Published

Do smells prime our gut to fight off infection?      (via sciencedaily.com)     Original source 

In nematodes and humans, mitochondrial stress in the nervous system initiates a whole-body response that is most pronounced in the gut. A recent study showed that in nematodes, the odor of a pathogen triggers the nervous system to broadcast this response to the rest of the organism, prepping mitochondria in intestinal cells to fight a bacterial infection. Humans, too, may be able to sense pathogenic odors that prepare the gut for an infection.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Astronomers uncover risks to planets that could host life      (via sciencedaily.com)     Original source 

A groundbreaking study has revealed that red dwarf stars can produce stellar flares that carry far-ultraviolet (far-UV) radiation levels much higher than previously believed.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Mathematics: Modeling
Published

Cracking the code of life: new AI model learns DNA's hidden language      (via sciencedaily.com)     Original source 

With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

Allergy cells' hidden secret      (via sciencedaily.com)     Original source 

Known for their role in allergic reactions, mast cells have long been recognised as key players in our immune system. When they encounter allergens, they release chemicals that trigger typical allergy symptoms such as tissue swelling and inflammation. Now, researchers have discovered a hidden talent of mast cells: they can capture and use another type of immune cell called neutrophils. This surprising discovery sheds new light on how our immune system works, particularly during allergic reactions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Coinfecting viruses impede each other's ability to enter cells      (via sciencedaily.com)     Original source 

The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.

Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Cold antimatter for quantum state-resolved precision measurements      (via sciencedaily.com)     Original source 

Why does the universe contain matter and (virtually) no antimatter? Scientists have achieved an experimental breakthrough in this context. It can contribute to measuring the mass and magnetic moment of antiprotons more precisely than ever before -- and thus identify possible matter-antimatter asymmetries. They have developed a trap, which can cool individual antiprotons much more rapidly than in the past.

Anthropology: Early Humans Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Environmental: General Geoscience: Environmental Issues
Published

Genetic signatures of domestication identified in pigs, chickens      (via sciencedaily.com)     Original source 

Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Talking about regeneration      (via sciencedaily.com)     Original source 

Researchers transferred genes from simple organisms capable of regenerating their bodies into common fruit flies, more complex animals that cannot. They found the transferred gene suppressed an age-related intestinal issue in the flies. Their results suggest studying genes specific to animals with high regenerative capability may uncover new mechanisms for rejuvenating stem cell function and extending the healthy lifespan of unrelated organisms.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Key to rapid planet formation      (via sciencedaily.com)     Original source 

Researchers have developed a new model to explain the formation of giant planets such as Jupiter, which furnishes deeper insights into the processes of planet formation and could expand our understanding of planetary systems.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

The rotation of a nearby star stuns astronomers      (via sciencedaily.com)     Original source 

Astronomers have found that the rotational profile of a nearby star, V889 Herculis, differs considerably from that of the Sun. The observation provides insights into the fundamental stellar astrophysics and helps us understand the activity of the Sun, its spot structures and eruptions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Unraveling a key junction underlying muscle contraction      (via sciencedaily.com)     Original source 

Using powerful new visualization technologies, researchers have captured the first 3-D images of the structure of a key muscle receptor, providing new insights on how muscles develop across the animal kingdom and setting the stage for possible future treatments for muscular disorders.