Showing 20 articles starting at article 821
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Space: Structures and Features
Published Celestial monsters at the origin of globular clusters



Globular clusters are the most massive and oldest star clusters in the Universe. They can contain up to 1 million of them. The chemical composition of these stars, born at the same time, shows anomalies that are not found in any other population of stars. Explaining this specificity is one of the great challenges of astronomy. After having imagined that supermassive stars could be at the origin, a team believes it has discovered the first chemical trace attesting to their presence in globular proto-clusters, born about 440 million years after the Big Bang.
Published Hidden views of vast stellar nurseries



Astronomers have created a vast infrared atlas of five nearby stellar nurseries by piecing together more than one million images. These large mosaics reveal young stars in the making, embedded in thick clouds of dust. Thanks to these observations, astronomers have a unique tool with which to decipher the complex puzzle of stellar birth.
Published Measurement of the Universe's expansion rate weighs in on a longstanding debate in physics and astronomy



A team used a first-of-its-kind technique to measure the expansion rate of the Universe, providing insight that could help more accurately determine the Universe's age and help physicists and astronomers better understand the cosmos.
Published Astronomers find no young binary stars near Milky Way's black hole



Scientists analyzed over a decade's worth of data about 16 young supermassive stars orbiting the supermassive black hole at the center of the Milky Way galaxy. Supermassive stars typically are formed in pairs, but the new study found that all 16 of the stars were singletons. The findings support a scenario in which the supermassive black hole drives nearby stars to either merge or be disrupted, with one of the pair being ejected from the system.
Published A journey to the origins of multicellular life: Long-term experimental evolution in the lab



Over 3,000 generations of laboratory evolution, researchers watched as their model organism, 'snowflake yeast,' began to adapt as multicellular individuals. In new research, the team shows how snowflake yeast evolved to be physically stronger and more than 20,000 times larger than their ancestor. Their study is the first major report on the ongoing Multicellularity Long-Term Evolution Experiment (MuLTEE), which the team hopes to run for decades.
Published Researchers measure the light emitted by a sub-Neptune planet's atmosphere



Researchers observed exoplanet GJ 1214b's atmosphere by measuring the heat it emits while orbiting its host star. Astronomers directly detected the light emitted by a sub-Neptune exoplanet -- a category of planets that are larger than Earth but smaller than Neptune.
Published Basic 'toolkit' for organ development is illuminated by sea star



One of the basic and crucial embryonic processes to unfold in virtually every living organism is the formation of hollow, tubular structures that go on to form blood vessels or a digestive tract, and through branching and differentiation, complex organs including the heart and kidneys. This study illuminates fundamental design principles of tubulogenesis for all chordates, including mammals.
Published Galactic bubbles are more complex than imagined



Astronomers have revealed new evidence about the properties of the giant bubbles of high-energy gas that extend far above and below the Milky Way galaxy's center.
Published T cells can activate themselves to fight tumors



Scientists find an auto-signaling mechanism driving the T cell anti-tumor response; findings may inspire new cancer therapeutics and biomarkers.
Published An unprecedented view of gene regulation



Using a new technique, researchers have shown that they can map interactions between gene promoters and enhancers with 100 times higher resolution than has previously been possible.
Published Elucidating the mysteries of enzyme evolution at the macromolecular level



Researchers have made a major breakthrough earlier this year in the field of evolutionary conservation of molecular dynamics in enzymes. Their work points to potential applications in health, including the development of new drugs to treat serious diseases such as cancer or to counter antibiotic resistance.
Published The evolution of honey bee brains



Researchers have proposed a new model for the evolution of higher brain functions and behaviors in the Hymenoptera order of insects. The team compared the Kenyon cells, a type of neuronal cell, in the mushroom bodies (a part of the insect brain involved in learning, memory and sensory integration) of 'primitive' sawflies and sophisticated honey bees. They found that three diverse, specialized Kenyon cell subtypes in honey bee brains appear to have evolved from a single, multifunctional Kenyon cell-subtype ancestor. In the future, this research could help us better understand the evolution of some of our own higher brain functions and behaviors.
Published Happy worms have healthy eggs



Researchers have exposed roundworms (a well-established model organism in biological research) to selective serotonin reuptake inhibitors (SSRIs), a class of drugs used for treating depression and anxiety. Surprisingly, this treatment improved the quality of aging females' egg cells.
Published Neutron star's X-rays reveal 'photon metamorphosis'



A 'beautiful effect' predicted by quantum electrodynamics (QED) can explain the puzzling first observations of polarized X-rays emitted by a magnetar -- a neutron star featuring a powerful magnetic field, according to an astrophysicist.
Published Hubble follows shadow play around planet-forming disk



The young star TW Hydrae is playing 'shadow puppets' with scientists observing it with NASA's Hubble Space Telescope. In 2017, astronomers reported discovering a shadow sweeping across the face of a vast pancake-shaped gas-and-dust disk surrounding the red dwarf star. The shadow isn't from a planet, but from an inner disk slightly inclined relative to the much larger outer disk -- causing it to cast a shadow. One explanation is that an unseen planet's gravity is pulling dust and gas into the planet's inclined orbit. The young star TW Hydrae is playing 'shadow puppets' with scientists observing it with NASA's Hubble Space Telescope. Now, a second shadow -- playing a game of peek-a-boo -- has emerged in just a few years between observations stored in Hubble's MAST archive. This could be from yet another disk nestled inside the system. The two disks are likely evidence of a pair of planets under construction.
Published Scientists discover the dynamics of an 'extra' chromosome in fruit flies



Most chromosomes have been around for millions of years. Now, researchers have revealed the dynamics of a new, very young chromosome in fruit flies that is similar to chromosomes that arise in humans and is associated with treatment-resistant cancer and infertility. The findings may one day lead to developing more targeted therapies for treating these conditions.
Published Astronomers spot a star swallowing a planet



Scientists have observed a star swallowing a planet for the first time. Earth will meet a similar fate in 5 billion years.
Published Astronomers find distant gas clouds with leftovers of the first stars



Using ESO's Very Large Telescope (VLT), researchers have found for the first time the fingerprints left by the explosion of the first stars in the Universe. They detected three distant gas clouds whose chemical composition matches what we expect from the first stellar explosions. These findings bring us one step closer to understanding the nature of the first stars that formed after the Big Bang.
Published A novel stem cell adhesive using mussels



A team of researchers develops stem cell adhesive for arthritis treatment using mussel adhesion protein and hyaluronic acid.
Published Scientists present evidence for a billion-years arms race between viruses and their hosts



Researchers have proposed a new evolutionary model for the origin of a kingdom of viruses called Bamfordvirae, suggesting a billion-years evolutionary arms race between two groups within this kingdom and their hosts.