Showing 20 articles starting at article 921
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Space: Structures and Features
Published Neutrinos made by a particle collider detected


Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.
Published Searching for life with space dust


Following enormous collisions, such as asteroid impacts, some amount of material from an impacted world may be ejected into space. This material can travel vast distances and for extremely long periods of time. In theory this material could contain direct or indirect signs of life from the host world, such as fossils of microorganisms. And this material could be detectable by humans in the near future, or even now.
Published Hunting Venus 2.0: Scientists sharpen their sights


With the first paper compiling all known information about planets like Venus beyond our solar system, scientists are the closest they've ever been to finding an analog of Earth's 'twin.'
Published To ward off aging, stem cells must take out the trash


Researchers find stem cells use a surprising system for discarding misfolded proteins. This unique pathway could be the key to maintaining long-term health and preventing age-related blood and immune disorders.
Published Galaxy changes classification as jet changes direction


A team of international astronomers have discovered a galaxy that has changed classification due to unique activity within its core. The galaxy, named PBC J2333.9-2343, was previously classified as a radio galaxy, but the new research has revealed otherwise.
Published Scientists find a common thread linking subatomic color glass condensate and massive black holes


Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.
Published Discovery of an unexpected function of blood immune cells: Their ability to proliferate


The ability of a cell to divide, to proliferate, is essential for life and gives rise to the formation of complex organisms from a single cell. It also allows the replacement of used cells from a limited number of 'stem' cells, which then proliferate and specialize. In cancer, however, cell proliferation is no longer controlled and becomes chaotic. Researchers have discovered that, in a healthy individual, certain blood immune cells, the monocytes, also have this ability to proliferate, with the aim to replace tissue macrophages, which are essential for the proper functioning of our body.
Published 'Terminator zones' on distant planets could harbor life


In a new study, astronomers describe how extraterrestrial life has the potential to exist on distant exoplanets inside a special area called the 'terminator zone,' which is a ring on planets that have one side that always faces its star and one side that is always dark.
Published Compressive stress shapes the symmetry of Arabidopsis root vascular tissue


A cytokinin-mediated, proliferation-based mechanism is involved in the generation and maintenance of cell-type specific tissue boundaries during vascular development in Arabidopsis roots. Specifically, the HANABA-TARANU transcription factor forms a feed-forward loop to cytokinin signaling, which in turn regulates the position and frequency of cell proliferation of proto-vascular cells such that mechanical stress of the surrounding tissues guides growth in an apical-oriented manor, maintaining cell patterning throughout the tissue section.
Published Where the HI-Virus sleeps in the brain


The human immunodeficiency virus HIV-1 is able to infect various tissues in humans. Once inside the cells, the virus integrates its genome into the cellular genome and establishes persistent infections. The role of the structure and organization of the host genome in HIV-1 infection is not well understood. Using a cell culture model based on brain immune microglia cells, an international research team has now defined the insertion patterns of HIV-1 in the genome of microglia cells.
Published Cellular waste removal differs according to cell type


'Miniature shredders' are at work in each cell, disassembling and recycling cell components that are defective or no longer required. The exact structure of these shredders differs from cell type to cell type, a study now shows. For example, cancer cells have a special variant that can supply them particularly effectively with building blocks for their energy metabolism.
Published Researchers highlight nucleolar DNA damage response in fight against cancer


Researchers have now encapsulated the young field of nucleolar DNA damage response (DDR) pathways. A new review highlights six mechanisms by which cells repair DNA damage. By attacking these mechanisms, future applied researchers will be able to trip up cancer's reproduction and growth.
Published Webb Telescope captures rarely seen prelude to supernova


The rare sight of a Wolf-Rayet star -- among the most luminous, most massive, and most briefly detectable stars known -- was one of the first observations made by NASA's James Webb Space Telescope in June 2022. Webb shows the star, WR 124, in unprecedented detail with its powerful infrared instruments. The star is 15,000 light-years away in the constellation Sagittarius.
Published Molecular component of caffeine may play a role in gut health


A new study explores exactly what leads to the generation of Th17 cells -- an important subtype of cells in the intestine -- and uncovers some of the underappreciated molecular players and events that lead to cell differentiation in the gut.
Published Mirror-image molecules can modify signaling in neurons


With the aid of some sea slugs, chemists have discovered that one of the smallest conceivable tweaks to a biomolecule can elicit one of the grandest conceivable consequences: directing the activation of neurons. The team has shown that the orientation of a single amino acid -- in this case, one of dozens found in the neuropeptide of a sea slug -- can dictate the likelihood that the peptide activates one neuron receptor versus another. Because different types of receptors are responsible for different neuronal activities, the finding points to another means by which a brain or nervous system can regulate the labyrinthine, life-sustaining communication among its cells.
Published TurboID uncovers new meiotic proteins in Arabidopsis thaliana


Meiotic recombination assures genetic variation during breeding. During meiotic prophase I, chromosomes are organized in a loop-base array by a proteinaceous structure called meiotic chromosome axis which is critical for meiotic recombination and genetically diverse gametes. An international research team reports the application of a TurboID (TbID)-based approach to identify proteins in proximity of meiotic chromosome axes in Arabidopsis thaliana. Not only known but also new meiotic proteins were uncovered.
Published A quick new way to screen virus proteins for antibiotic properties


A whole new world of antibiotics is waiting inside the viruses that infect bacteria. Scientists are making it easier to study them.
Published How to assemble a complete jaw


The skeleton, tendons, and glands of a functional jaw all derive from the same population of stem cells, which arise from a cell population known as neural crest. To discover how these neural crest-derived cells know to make the right type of cell in the right location, researchers focused on a particular gene, Nr5a2, that was active in a region of the face that makes tendons and glands, but not skeleton. To understand the role of Nr5a2, the scientists created zebrafish lacking this gene. These mutant zebrafish generated excess cartilage and were missing tendons in their jaws.
Published New study challenges our understanding of the immune system


Researchers have created a radical new view of how immune cells recognise threats such as viruses. The discovery could be used to design better vaccines and to gain a deeper insight into autoimmune diseases and allergies.
Published New insights into cellular 'bridges' shed light on development, disease


Most cells in the bodies of living things duplicate their contents and physically separate into new cells through the process of cell division. But across many species, germ cells, those that become eggs or sperm, don't fully separate. They remain interconnected through small bridges called ring canals and cluster together. In a new study, researchers uncover how it is that germ cells in fruit flies form these ring canals, a finding that they say will provide new insights into a widely shared feature of development and into diseases in which cell division is disrupted.