Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Biology: Cell Biology, Space: Structures and Features
Published Cracking the code of life: new AI model learns DNA's hidden language



With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.
Published Why virus causing cold sores does not spread to devastating brain infection



A previously unknown defence mechanism in the brain prevents herpesvirus from infecting the brain's nerve cells.
Published 'Laser view' into the avocado: New method reveals cell interior



Checking whether an avocado is hard or soft by looking at it? This would require recognizing how the plant cells behave behind the skin. The same applies to all other cells on our planet: Despite more than 100 years of intensive research, many of their properties remain hidden inside the cell. Researchers now describe a new approach that can determine the particularly difficult-to-detect mechanical properties of the cell interior by taking a closer look.
Published Improving cat food flavors with the help of feline taste-testers



Cats are notoriously picky eaters. But what if we could design their foods around flavors that they're scientifically proven to enjoy? Researchers used a panel of feline taste-testers to identify favored flavor compounds in a series of chicken-liver-based sprays. The cats particularly enjoyed the sprays that contained more free amino acids, which gave their kibble more savory and fatty flavors.
Published Discovery of a new population of macrophages promoting lung repair after viral infections



Researchers have discovered a new population of macrophages, important innate immune cells that populate the lungs after injury caused by respiratory viruses. These macrophages are instrumental in repairing the pulmonary alveoli. This groundbreaking discovery promises to revolutionize our understanding of the post-infectious immune response and opens the door to new regenerative therapies.
Published New compound effective against flesh-eating bacteria



Researchers have developed a compound that is effective against common bacteria that can lead to rare, dangerous illnesses.
Published Allergy cells' hidden secret



Known for their role in allergic reactions, mast cells have long been recognised as key players in our immune system. When they encounter allergens, they release chemicals that trigger typical allergy symptoms such as tissue swelling and inflammation. Now, researchers have discovered a hidden talent of mast cells: they can capture and use another type of immune cell called neutrophils. This surprising discovery sheds new light on how our immune system works, particularly during allergic reactions.
Published Reduction in folate intake linked to healthier aging in animal models



Scientists found that decreasing folate intake can support healthier metabolisms in aging animal models, challenging the conventional belief that high folate consumption universally benefits health.
Published Coinfecting viruses impede each other's ability to enter cells



The process by which phages -- viruses that infect and replicate within bacteria -- enter cells has been studied for over 50 years. In a new study, researchers have used cutting-edge techniques to look at this process at the level of a single cell.
Published Cold antimatter for quantum state-resolved precision measurements



Why does the universe contain matter and (virtually) no antimatter? Scientists have achieved an experimental breakthrough in this context. It can contribute to measuring the mass and magnetic moment of antiprotons more precisely than ever before -- and thus identify possible matter-antimatter asymmetries. They have developed a trap, which can cool individual antiprotons much more rapidly than in the past.
Published Ancient Antarctic microorganisms are aggressive predators



Antarctic dwelling single-celled microorganisms called archaea can behave like parasites, new research shows.
Published Circular RNAs: The new frontier in cancer research



Unravelling the complexities of circular RNAs (circRNAs) in cancer biology has positioned scientists on the cusp of revolutionary breakthroughs in the diagnosis and treatment of cancer. A new study predicts remarkable potential for circular RNAs to improve cancer treatment and patient outcomes within the next 5-10 years.
Published What gave the first molecules their stability?



The origins of life remain a major mystery. How were complex molecules able to form and remain intact for prolonged periods without disintegrating? A team has demonstrated a mechanism that could have enabled the first RNA molecules to stabilize in the primordial soup. When two RNA strands combine, their stability and lifespan increase significantly.
Published Genetic signatures of domestication identified in pigs, chickens



Wild boars and red junglefowl gave rise to common pigs and chickens. These animals' genes evolved to express themselves differently, leading to signatures of domestication -- such as weaker bones and better viral resistance -- in pigs and chickens, according to a research team.
Published Precise package delivery in cells?



Researchers have developed new real-time microscopy technology and successfully observed the behavior of 'motor proteins', which may hold the key to unraveling the efficient material transport strategy of cells.
Published When it comes to DNA replication, humans and baker's yeast are more alike than different



Humans and baker's yeast have more in common than meets the eye, including an important mechanism that helps ensure DNA is copied correctly, reports a pair of studies. The findings visualize for the first time a molecular complex -- called CTF18-RFC in humans and Ctf18-RFC in yeast -- that loads a 'clamp' onto DNA to keep parts of the replication machinery from falling off the DNA strand.
Published Which strains of tuberculosis are the most infectious?



Highly localized TB strains are less infectious in cosmopolitan cities and more likely to infect people from the geographic area that is the strain's natural habitat. The research provides the first controlled evidence that TB strains may evolve with their human hosts, adapting to be more infectious to specific populations. The findings offer new clues for tailoring preventive treatments after exposure to TB based on affinity between strains host populations.
Published Novel nanosensing technique for quality control of viral vectors in gene therapy



Researchers develop a nanosensing platform that can assess the quality of individual viral vector particles Viral vectors hold much potential for gene editing and gene therapy, but there is a pressing need to develop quality control methods to minimize potential side effects on patients. Addressing this, researchers from Japan developed a nanosensing-based approach that can differentiate between functional and faulty viral vectors at the single-particle level. This convenient and inexpensive technique will hopefully get us one step closer to advancing treatments for genetic disorders.
Published Breakthrough in plant disease: New enzyme could lead to anti-bacterial pesticides



Scientists uncover a pivotal enzyme, XccOpgD, and its critical role in synthesizing C G16, a key compound used by Xanthomonas pathogens to enhance their virulence against plants. This breakthrough opens new avenues for developing targeted pesticides that combat plant diseases without harming beneficial organisms. Insights into XccOpgD's enzymatic mechanism and optimal conditions offer promising prospects for sustainable agriculture, bolstering crop resilience and global food security while minimizing environmental impact.
Published Cheese of the future: Consumers open to animal-free alternatives



Companies and institutes are currently working on biotechnological processes for the production of 'dairy products' without the use of cows: In so-called precision fermentation, egg and milk proteins are produced with the help of bacteria, yeasts or other fungi. This results in foods such as milk or cheese with a familiar flavor and texture. Supporters hope that this will lead to more sustainable food production, as nutrient-rich proteins can be produced using fewer resources. But will consumers accept such products?