Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Space: Structures and Features
Published Unexpected chemistry reveals cosmic star factories' secrets



Two galaxies in the early universe, which contain extremely productive star factories, have been studied by a team of scientists. Using powerful telescopes to split the galaxies' light into individual colors, the scientists were amazed to discover light from many different molecules -- more than ever before at such distances. Studies like this could revolutionize our understanding of the lives of the most active galaxies when the universe was young, the researchers believe.
Published Tiniest free-floating brown dwarf



Brown dwarfs are objects that straddle the dividing line between stars and planets. They form like stars, growing dense enough to collapse under their own gravity, but they never become dense and hot enough to begin fusing hydrogen and turn into a star. At the low end of the scale, some brown dwarfs are comparable with giant planets, weighing just a few times the mass of Jupiter.
Published Enzymes can't tell artificial DNA from the real thing



Researchers have come one step closer to unlocking the potential of synthetic DNA, which could help scientists develop never-before-seen proteins in the lab.
Published Cell types in the eye have ancient evolutionary origins



In a comparative analysis across vertebrates of the many cell types in the retina -- mice alone have 130 types -- researchers concluded that most cell types have an ancient evolutionary history. Their remarkable conservation across species suggests that the retina of the last common ancestor of all mammals, which roamed the earth some 200 million year ago, must have had a complexity rivaling the retina of modern mammals.
Published Some icy exoplanets may have habitable oceans and geysers



A new study expands the search for life beyond our solar system by indicating that 17 exoplanets (worlds outside our solar system) could have oceans of liquid water, an essential ingredient for life, beneath icy shells. Water from these oceans could occasionally erupt through the ice crust as geysers. The science team calculated the amount of geyser activity on these exoplanets, the first time these estimates have been made. They identified two exoplanets sufficiently close where signs of these eruptions could be observed with telescopes.
Published NASA's Webb stuns with new high-definition look at exploded star



Like a shiny, round ornament ready to be placed in the perfect spot on a holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image.
Published New genes can arise from nothing



The complexity of living organisms is encoded within their genes, but where do these genes come from? Researchers resolved outstanding questions regarding the origin of small regulatory genes, and described a mechanism that creates their DNA palindromes. Under suitable circumstances, these palindromes evolve into microRNA genes.
Published Molecular fossils shed light on ancient life



Paleontologists are getting a glimpse at life over a billion years in the past based on chemical traces in ancient rocks and the genetics of living animals. New research combines geology and genetics, showing how changes in the early Earth prompted a shift in how animals eat.
Published Giant doubts about giant exomoons



The extrasolar planets Kepler-1625b and Kepler-1708b are supposedly the home worlds of the first known exomoons. A new study now comes to a different conclusion.
Published Ancient stars made extraordinarily heavy elements



How heavy can an element be? An international team of researchers has found that ancient stars were capable of producing elements with atomic masses greater than 260, heavier than any element on the periodic table found naturally on Earth. The finding deepens our understanding of element formation in stars.
Published Stellar winds regulate growth of galaxies



Galactic winds enable the exchange of matter between galaxies and their surroundings. In this way, they limit the growth of galaxies, that is, their star formation rate. Although this had already been observed in the local universe, an international research team has just revealed the existence of the phenomenon in galaxies which are more than 7 billion years old and actively forming stars, the category to which most galaxies belong. The team's findings thus show this is a universal process.
Published Unlocking neutron star rotation anomalies: Insights from quantum simulation



A collaboration between quantum physicists and astrophysicists has achieved a significant breakthrough in understanding neutron star glitches. They were able to numerically simulate this enigmatic cosmic phenomenon with ultracold dipolar atoms. This research establishes a strong link between quantum mechanics and astrophysics and paves the way for quantum simulation of stellar objects from Earth.
Published Astronomers determine the age of three mysterious baby stars at the heart of the Milky Way



Through analysis of high-resolution data from a ten-meter telescope in Hawaii, researchers have succeeded in generating new knowledge about three stars at the very heart of the Milky Way. The stars proved to be unusually young with a puzzling chemical composition that surprised the researchers.
Published Interpreting the afterglow of a black hole's breakfast



An entirely new way to probe how active black holes behave when they eat has been discovered by an international team of astronomers.
Published 10-billion-year, 50,000-light-year journey to black hole



A star near the supermassive black hole at the center of the Milky Way Galaxy originated outside of the Galaxy according to a new study. This is the first time a star of extragalactic origin has been found in the vicinity of the super massive black hole.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Dark galactic region nicknamed 'The Brick' explained with Webb telescope findings



Using the James Webb Space Telescope, astronomers spot unexpected source of carbon monoxide ice at galactic region surprisingly devoid of stars.
Published Earliest-known fossil mosquito suggests males were bloodsuckers too



Researchers have found the earliest-known fossil mosquito in Lower Cretaceous amber from Lebanon. What's more, the well-preserved insects are two males of the same species with piercing mouthparts, suggesting they likely sucked blood. That's noteworthy because, among modern-day mosquitoes, only females are hematophagous, meaning that they use piercing mouthparts to feed on the blood of people and other animals.
Published Crocodile family tree mapped: New light shed on croc evolution



Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published Ghostlike dusty galaxy reappears in James Webb Space Telescope image



Astronomers studying images from the James Webb Space Telescope have identified an object as a 'dusty star-forming galaxy' from nearly 1 billion years after the Big Bang. They have also discovered more than a dozen additional candidates, suggesting these galaxies might be three to 10 times as common as expected. If that conclusion is confirmed, it suggests the early universe was much dustier than previously thought.