Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Animals
Published

Large-scale mapping of pig genes could pave the way for new human medicines      (via sciencedaily.com)     Original source 

Researchers have carried out complex genetic analyses of hundreds of pigs and humans to identify differences and similarities. This new knowledge can be used to ensure healthier pigs for farmers and can help the pharmaceutical industry breed better laboratory pigs for testing new medicines.

Biology: Microbiology
Published

War on superbugs can't be won, researchers declare      (via sciencedaily.com)     Original source 

From a wartime spread of antimicrobial resistant disease in Ukraine, to superbugs in China causing 'white lung' pneumonia in children, 2023 brought no shortage of new evidence that antimicrobial resistance (AMR) continues to be a pressing problem globally, and this pattern shows no sign of abating in 2024 unless a radical shift occurs. To truly tackle the issue of AMR, researchers with the Global Strategy Lab (GSL) argue it needs to be understood as a socio-ecological challenge that accepts AMR as a phenomenon stemming from natural evolutionary processes. In other words, the war on bugs can't be won; what's needed is a major change in how people live with it.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Final supernova results from Dark Energy Survey offer unique insights into the expansion of the universe      (via sciencedaily.com)     Original source 

In the culmination of a decade's worth of effort, scientists analyzed an unprecedented sample of more than 1,500 supernovae classified using machine learning. They placed the strongest constraints on the expansion of the universe ever obtained with the DES supernova survey. While consistent with the current standard cosmological model, the results do not rule out a more complex theory that the density of dark energy in the universe could have varied over time.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers discover molecular 'barcode' used by bacteria to secrete toxins      (via sciencedaily.com)     Original source 

Researchers have discovered a molecular 'barcode' system used by disease-causing bacteria to distinguish between beneficial and toxic molecules.

Biology: Microbiology Ecology: Trees Environmental: Ecosystems
Published

Preventing the destruction of Eucalyptus forest plantations: Naturally occurring pathogenic fungi to control the Eucalyptus snout beetle      (via sciencedaily.com)     Original source 

Scientists have found naturally occurring pathogenic fungi infecting the Eucalyptus snout beetle in Eucalyptus forest plantations, and characterized them to develop a bio-pesticide for controlling the beetle.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Three iron rings in a planet-forming disk      (via sciencedaily.com)     Original source 

Astronomers have detected a three-ringed structure in the nursery of planets in the inner planet-forming disk of a young star. This configuration suggests two Jupiter-mass planets are forming in the gaps between the rings. The detailed analysis is consistent with abundant solid iron grains complementing the dust composition. As a result, the disk likely harbors metals and minerals akin to those in the Solar System's terrestrial planets. It offers a glimpse into conditions resembling the early Solar System over four billion years ago during the formation of rocky planets such as Mercury, Venus, and Earth.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

Researchers develop algorithm to determine how cellular 'neighborhoods' function in tissues      (via sciencedaily.com)     Original source 

Researchers have developed a new AI-powered algorithm to help understand how different cells organize themselves into particular tissues and communicate with one another.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Important membrane transport mechanism in pathogenic bacteria      (via sciencedaily.com)     Original source 

Some bacterial membrane transporters work almost like freight elevators to transport substances through the cell membrane into the interior of the cell. The transporter itself spans the bacterial membrane. Like a forklift, a soluble protein outside the bacterium transports the substance to the 'elevator' and unloads its cargo there. The freight elevator transports it to the inside of the cell, in other words to another floor.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Nature Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Evolution is not as random as previously thought      (via sciencedaily.com)     Original source 

A groundbreaking study has found that evolution is not as unpredictable as previously thought, which could allow scientists to explore which genes could be useful to tackle real-world issues such as antibiotic resistance, disease and climate change. The study challenges the long-standing belief about the unpredictability of evolution, and has found that the evolutionary trajectory of a genome may be influenced by its evolutionary history, rather than determined by numerous factors and historical accidents.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Space oddity: Uncovering the origin of the universe's rare radio circles      (via sciencedaily.com)     Original source 

Astronomers believe they may have found the origin of the universe's giant odd radio circles: they are shells formed by outflowing galactic winds, possibly from massive exploding stars known as supernovae.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

A new approach can address antibiotic resistance to Mycobacterium abscessus      (via sciencedaily.com)     Original source 

Scientists have created analogs of the antibiotic spectinomycin that are significantly more effective against these highly resistant bacteria.

Biology: Biochemistry Biology: General Biology: Microbiology
Published

Classifying the natural history of asymptomatic malaria      (via sciencedaily.com)     Original source 

The dynamic lifecycle of the malaria parasite means that the density of the Plasmodium can suddenly drop below the level of detection in asymptomatic people -- especially when older, less sensitive tests are used. Such fluctuations can make it difficult, when testing only at a single point in time, to determine if an apparently healthy person is in fact infected.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Geoscience: Geochemistry
Published

Scientists engineer plant microbiome to protect crops against disease      (via sciencedaily.com)     Original source 

Scientists have engineered the microbiome of plants for the first time, boosting the prevalence of 'good' bacteria that protect the plant from disease. The findings could substantially reduce the need for environmentally destructive pesticides.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

New roles for autophagy genes in cellular waste management and aging      (via sciencedaily.com)     Original source 

Autophagy, which declines with age, may hold more mysteries than researchers previously suspected. Scientists have now uncovered possible novel functions for various autophagy genes, which may control different forms of disposal including misfolded proteins -- and ultimately affect aging.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

The surprisingly resourceful ways bacteria thrive in the human gut      (via sciencedaily.com)     Original source 

New research shows that some groups of bacteria in the gut are amazingly resourceful, with a large repertoire of genes that help them generate energy for themselves and potentially influence human health as well.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Ecology: Animals Geoscience: Geochemistry
Published

Scientists solve mystery of how predatory bacteria recognizes prey      (via sciencedaily.com)     Original source 

A decades-old mystery of how natural antimicrobial predatory bacteria are able to recognize and kill other bacteria may have been solved, according to new research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Treating tuberculosis when antibiotics no longer work      (via sciencedaily.com)     Original source 

A research team has detected various substances that have a dual effect against tuberculosis: They make the bacteria causing the disease less pathogenic for human immune cells and boost the activity of conventional antibiotics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Nematode proteins shed light on infertility      (via sciencedaily.com)     Original source 

Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.