Chemistry: General Energy: Batteries Energy: Technology Engineering: Robotics Research
Published

Lightening the load: Researchers develop autonomous electrochemistry robot      (via sciencedaily.com)     Original source 

Researchers have developed an automated laboratory robot to run complex electrochemical experiments and analyze data. The Electrolab will be used to explore next-generation energy storage materials and chemical reactions that promote alternative and sustainable energy.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries
Published

Photo battery achieves competitive voltage      (via sciencedaily.com)     Original source 

Researchers have developed a monolithically integrated photo battery using organic materials. The photo battery achieves an unprecedented high discharge potential of 3.6 volts. The system is capable of powering miniature devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Charged 'molecular beasts' the basis for new compounds      (via sciencedaily.com)     Original source 

Mass spectrometers are high-tech machines that play an important role in our society. They are highly sensitive analytical instruments that are indispensable in areas such as medical diagnostics, food quality control and the detection of hazardous chemical substances. A research group is working to modify mass spectrometers so that they can be used for a completely different purpose: the chemical synthesis of new molecules.

Chemistry: General Chemistry: Organic Chemistry Energy: Technology Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Self-powered microbial fuel cell biosensor for monitoring organic freshwater pollution      (via sciencedaily.com)     Original source 

Biodegradable waste from plant and animal sources released into freshwater ecosystems is a significant environmental concern. Nonetheless, current methods for assessing water quality seem more or less impractical due to their complexity and high costs. In a promising development, a team of researchers has successfully constructed a self-sustaining and buoyant biosensor using inexpensive carbon-based materials for monitoring water quality at the inlets of freshwater lakes and rivers.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists make breakthrough in drug discovery chemistry      (via sciencedaily.com)     Original source 

Chemists offer two new methods to develop a way to easily replace a carbon atom with a nitrogen atom in a molecule.  The findings could make it easier to develop new drugs.

Chemistry: Biochemistry Engineering: Robotics Research
Published

Injectable tissue prosthesis to aid in damaged muscle/nerve regeneration      (via sciencedaily.com)     Original source 

Researchers have made significant strides in biomaterial technology and rehabilitation medicine. They've developed a novel approach to healing muscle injury by employing 'injectable tissue prosthesis' in the form of conductive hydrogels and combining it with a robot-assisted rehabilitation system.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Breakthrough discovery sheds light on heart and muscle health      (via sciencedaily.com)     Original source 

The human heart, often described as the body's engine, is a remarkable organ that tirelessly beats to keep us alive. At the core of this vital organ, intricate processes occur when it contracts, where thick and thin protein-filaments interact within the sarcomere, the fundamental building block of both skeletal and heart muscle cells. Any alterations in thick filament proteins can have severe consequences for our health, leading to conditions such as hypertrophic cardiomyopathy and various other heart and muscle diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New Nijmegen method reveals hidden genetic variations      (via sciencedaily.com)     Original source 

Many hidden genetic variations can be detected with Chameleolyser, a new method. The information is already yielding new patient diagnoses and may also lead to the discovery of as yet unknown disease genes.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Efficient biohybrid batteries      (via sciencedaily.com)     Original source 

Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

New frequency comb can identify molecules in 20-nanosecond snapshots      (via sciencedaily.com)     Original source 

Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

'Plug and play' nanoparticles could make it easier to tackle various biological targets      (via sciencedaily.com)     Original source 

Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.

Chemistry: General Energy: Alternative Fuels Engineering: Robotics Research Environmental: General Geoscience: Geochemistry
Published

How robots can help find the solar energy of the future      (via sciencedaily.com)     Original source 

To quickly and accurately characterize prospective materials for use in solar energy, researchers built an automated system to perform laboratory experiments and used machine learning to help analyze the data they recorded. Their goal is to identify semiconductor materials for use in photovoltaic solar energy, which are highly efficient and have low toxicity.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General
Published

How to protect biocatalysts from oxygen      (via sciencedaily.com)     Original source 

There are high hopes for hydrogen as the key to the energy transition. A specific enzyme group found in algae and in bacteria can produce molecular hydrogen simply by catalyzing protons and electrons. However, the enzyme group is so sensitive to oxygen that commercial use of the hydrogen produced by this process as a green energy source is not yet possible. Researchers have now increased the oxygen stability of a hydrogen-producing enzyme by genetically generated channel blockages.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Robot stand-in mimics movements in VR      (via sciencedaily.com)     Original source 

Researchers have developed a souped-up telepresence robot that responds automatically and in real-time to a remote user's movements and gestures made in virtual reality.

Computer Science: General Engineering: Robotics Research
Published

Energy-saving AI chip      (via sciencedaily.com)     Original source 

A computer scientist has developed an AI-ready architecture that is twice as powerful as comparable in-memory computing approaches. The researcher applies a new computational paradigm using special circuits known as ferroelectric field effect transistors (FeFETs). Within a few years, this could prove useful for generative AI, deep learning algorithms and robotic applications.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Engineers develop breakthrough 'robot skin'      (via sciencedaily.com)     Original source 

Smart, stretchable and highly sensitive, a new soft sensor opens the door to a wide range of applications in robotics and prosthetics. When applied to the surface of a prosthetic arm or a robotic limb, the sensor skin provides touch sensitivity and dexterity, enabling tasks that can be difficult for machines such as picking up a piece of soft fruit. The sensor is also soft to the touch, like human skin, which helps make human interactions safer and more lifelike. 

Chemistry: Biochemistry Engineering: Robotics Research
Published

A new era for accurate, rapid COVID-19 testing      (via sciencedaily.com)     Original source 

Researchers demonstrate a nanopore-based technique that can detect different variants of SARS-CoV-2, the virus that causes COVID-19. The method was very effective in detecting the Omicron variant of the virus in the saliva of people with COVID-19.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology
Published

DNA Origami nanoturbine sets new horizon for nanomotors      (via sciencedaily.com)     Original source 

Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.