Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Engineering: Robotics Research
Published Fresh meat: New biosensor accurately and efficiently determines meat freshness



Despite the technological advances keeping meat fresh for as long as possible, certain aging processes are unavoidable. Adenosine triphosphate is a molecule produced by breathing and responsible for providing energy to cells. When an animal stops breathing, ATP synthesis also stops, and the existing molecules decompose into acid, diminishing first flavor and then safety. Hypoxanthine and xanthine are intermediate steps in this transition. Assessing their prevalence in meat indicates its freshness.
Published First human trial shows 'wonder' material can be developed safely



A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.
Published Two-dimensional waveguides discovered



Scientists announce the discovery of slab waveguides based on the two-dimensional material hexagonal boron nitride.
Published Treating liver cancer with microrobots piloted by a magnetic field



Researchers have developed a novel approach to treat liver tumors using magnet-guided microrobots in an MRI device.
Published How ancient sea creatures can inform soft robotics



Fossils of a marine animal that lived 500 million years ago, combined with computer simulations, informed the design of a new soft robot.
Published Why insects navigate more efficiently than robots



Engineers have studied how insects navigate, for the purpose of developing energy-efficient robots.
Published Sensors made from 'frozen smoke' can detect toxic formaldehyde in homes and offices



Researchers have developed a sensor made from 'frozen smoke' that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.
Published New adhesive tape picks up and sticks down 2D materials as easily as child's play



A research team has developed a tape that can be used to stick two-dimensional (2D) materials to many different surfaces, in an easy and user-friendly way. Their finding will aid research into and boost production of 2D materials for next-generation devices.
Published 3D printed nanocellulose upscaled for green architectural applications



For the first time, a hydrogel material made of nanocellulose and algae has been tested as an alternative, greener architectural material. The study shows how the abundant sustainable material can be 3D printed into a wide array of architectural components, using much less energy than conventional construction methods.
Published GPT-3 transforms chemical research



Scientists demonstrate how GPT-3 can transform chemical analysis, making it faster and more user-friendly.
Published One person can supervise 'swarm' of 100 unmanned autonomous vehicles



Research involving has shown that a 'swarm' of more than 100 autonomous ground and aerial robots can be supervised by one person without subjecting the individual to an undue workload.
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published Engineers unveil new patch that can help people control robotic exoskeletons



A new patch uses tiny needles to measure electrical signals in the human body with incredible accuracy, even when these devices are stretched or twisted.
Published Artificial muscles -- lighter, safer, more robust



Researchers have developed artificial muscles that are lighter, safer and more robust than their predecessors. The newly developed actuators have a novel type of shell structure and use a high-permittivity ferroelectric material that can store relatively large amounts of electrical energy. They therefore work with relatively low electrical voltage, are waterproof, more robust and safer to touch.
Published Sweat-resistant wearable robot sensor



A joint research team has developed a stretchable and adhesive microneedle sensor that can be attached to the skin and stably measure high-quality electrophysiological signals for a long period of time.
Published Researchers propose AI-guided system for robotic inspection of buildings, roads and bridges



Our built environment is aging and failing faster than we can maintain it. Recent building collapses and structural failures of roads and bridges are indicators of a problem that's likely to get worse, according to experts, because it's just not possible to inspect every crack, creak and crumble to parse dangerous signs of failure from normal wear and tear. In hopes of playing catch-up, researchers are trying to give robotic assistants the tools to help inspectors with the job.
Published Robot trained to read braille at twice the speed of humans



Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.
Published Utilizing active microparticles for artificial intelligence



Artificial intelligence using neural networks performs calculations digitally with the help of microelectronic chips. Physicists have now created a type of neural network that works not with electricity but with so-called active colloidal particles.The researchers describe how these microparticles can be used as a physical system for artificial intelligence and the prediction of time series.