Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Paleontology: General
Published Researchers studying ocean transform faults, describe a previously unknown part of the geological carbon cycle



This study reports widespread mineral carbonation of mantle rocks in an oceanic transform fueled by magmatic degassing of CO2. The findings describe a previously unknown part of the geological carbon cycle in transform faults that represent one of the three principal plate boundaries on Earth. The confluence of tectonically exhumed mantle rocks and CO2-rich alkaline basalt formed through limited extents of melting characteristic of the St. Paul's transform faults may be a pervasive feature at oceanic transform faults in general. Because transform faults have not been accounted for in previous estimates of global geological CO2 fluxes, the mass transfer of magmatic CO2 to the altered oceanic mantle and seawater may be larger than previously thought.
Published How ancient sea creatures can inform soft robotics



Fossils of a marine animal that lived 500 million years ago, combined with computer simulations, informed the design of a new soft robot.
Published The hidden rule for flight feathers -- and how it could reveal which dinosaurs could fly



Scientists examined hundreds of birds in museum collections and discovered a suite of feather characteristics that all flying birds have in common. These 'rules' provide clues as to how the dinosaur ancestors of modern birds first evolved the ability to fly, and which dinosaurs were capable of flight.
Published Why insects navigate more efficiently than robots



Engineers have studied how insects navigate, for the purpose of developing energy-efficient robots.
Published Surprisingly vibrant color of 12-million-year-old snail shells



Snail shells are often colorful and strikingly patterned. This is due to pigments that are produced in special cells of the snail and stored in the shell in varying concentrations. Fossil shells, on the other hand, are usually pale and inconspicuous because the pigments are very sensitive and have already decomposed. Residues of ancient color patterns are therefore very rare. This makes a new discovery all the more astonishing: researchers found pigments in twelve-million-year-old fossilized snail shells.
Published New fossil site of worldwide importance uncovered in southern France



Nearly 400 exceptionally well-preserved fossils dating back 470 million years have been discovered in the south of France by two amateur paleontologists. The discovery provides unprecedented information on the polar ecosystems of the Ordovician period.
Published Ancient pollen trapped in Greenland ice uncovers changes in Canadian forests over 800 years



The Greenland ice sheet lies thousands of miles from North America yet holds clues to the distant continent's environmental history. Nearly two miles thick in places, the ice sheet grows as snow drifts from the sky and builds up over time. But snow isn't the only thing carried in by air currents that swirl around the atmosphere, with microscopic pollen grains and pieces of ash mixing with snowfall and preserving records of the past in the ice. A new study examined these pollen grains and identified how eastern Canada's forests grew, retreated, and changed through time.
Published What turned Earth into a giant snowball 700 million years ago? Scientists now have an answer



Inspired during field work in South Australia's Flinders Ranges, geoscientists have proposed that all-time low volcanic carbon dioxide emissions triggered a 57-million-year-long global 'Sturtian' ice age.
Published Dinosaurs' success helped by specialized stance and gait, study finds



Dinosaurs' range of locomotion made them incredibly adaptable, researchers have found.
Published 3D printed nanocellulose upscaled for green architectural applications



For the first time, a hydrogel material made of nanocellulose and algae has been tested as an alternative, greener architectural material. The study shows how the abundant sustainable material can be 3D printed into a wide array of architectural components, using much less energy than conventional construction methods.
Published Ancient Australian air-breathing fish from 380 million years ago



The rivers of Australia, which once flowed across its now dry interior, used to host a range of bizarre animals -- including a sleek predatory lobe-finned fish with large fangs and bony scales. The newly described fossil fish discovered in remote fossil fields west of Alice Springs has been named Harajicadectes zhumini by palaeontologists.
Published GPT-3 transforms chemical research



Scientists demonstrate how GPT-3 can transform chemical analysis, making it faster and more user-friendly.
Published One person can supervise 'swarm' of 100 unmanned autonomous vehicles



Research involving has shown that a 'swarm' of more than 100 autonomous ground and aerial robots can be supervised by one person without subjecting the individual to an undue workload.
Published Rare 3D fossils show that some early trees had forms unlike any you've ever seen



In the fossil record, trees typically are preserved with only their trunks. They don't usually include any leaves to show what their canopies and overall forms may have looked like. In a new study, researchers describe fossilized trees from New Brunswick, Canada with a surprising and unique three-dimensional crown shape.
Published Engineers unveil new patch that can help people control robotic exoskeletons



A new patch uses tiny needles to measure electrical signals in the human body with incredible accuracy, even when these devices are stretched or twisted.
Published Scientists pinpoint growth of brain's cerebellum as key to evolution of bird flight



Evolutionary biologists report they have combined PET scans of modern pigeons along with studies of dinosaur fossils to help answer an enduring question in biology: How did the brains of birds evolve to enable them to fly?
Published Artificial muscles -- lighter, safer, more robust



Researchers have developed artificial muscles that are lighter, safer and more robust than their predecessors. The newly developed actuators have a novel type of shell structure and use a high-permittivity ferroelectric material that can store relatively large amounts of electrical energy. They therefore work with relatively low electrical voltage, are waterproof, more robust and safer to touch.
Published Sweat-resistant wearable robot sensor



A joint research team has developed a stretchable and adhesive microneedle sensor that can be attached to the skin and stably measure high-quality electrophysiological signals for a long period of time.
Published Researchers propose AI-guided system for robotic inspection of buildings, roads and bridges



Our built environment is aging and failing faster than we can maintain it. Recent building collapses and structural failures of roads and bridges are indicators of a problem that's likely to get worse, according to experts, because it's just not possible to inspect every crack, creak and crumble to parse dangerous signs of failure from normal wear and tear. In hopes of playing catch-up, researchers are trying to give robotic assistants the tools to help inspectors with the job.
Published How did humans learn to walk? New evolutionary study offers an earful



A new study, which centers on evidence from skulls of a 6-million-year-old fossil ape, Lufengpithecus, offers important clues about the origins of bipedal locomotion courtesy of a novel method: analyzing its bony inner ear region using three-dimensional CT-scanning. The inner ear appears to provide a unique record of the evolutionary history of ape locomotion.