Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Engineering: Nanotechnology
Published Progress in development of a new high-tech kidney disease urine test



Development of a new way to accurately measure human serum albumin (HSA) levels in people with chronic kidney disease has progressed in recent testing.
Published Mining rare earth metals from electronic waste



A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.
Published Detecting defects in tomorrow's technology



New research offers an enhanced understanding of common defects in transition-metal dichalcogenides (TMDs) -- a potential replacement for silicon in computer chips -- and lays the foundation for etching smaller features.
Published Researchers fabricate ultrastrong aluminum alloys for additive manufacturing



Material engineers have created a patent-pending process to develop ultrahigh-strength aluminum alloys that are suitable for additive manufacturing because of their plastic deformability. They have produced the alloys by using several transition metals that traditionally have been largely avoided in the manufacture of aluminum alloys.
Published It takes a cool microscope and antifreeze to really look at ice



Ice in nature is surrounded by liquid most of the time, and therefore it is key to understand how ice and liquid interact. A new study has now directly observe the precise shape of ice at the interface between ice and liquid -- by using antifreeze and a refrigerated microscope.
Published Chemistry inspired by one-pot cooking



Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Ionic liquids: 'Don't shake it'



Chemists have develop innovative ionic liquid synthesis and purification technology.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published Scientists discover way to 'grow' sub-nanometer sized transistors



A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.
Published Chemists synthesize an improved building block for medicines



Research could help drug developers improve the safety profiles of medications and reduce side effects.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Mechanism of bio-inspired control of liquid flow



The more we discover about the natural world, the more we find that nature is the greatest engineer. Past research implied that liquids can only be transported in fixed direction on species with specific liquid communication properties and cannot switch the transport direction. Recently, researchers have shown that an African plant controls water movement in a previously unknown way -- and this could inspire breakthroughs in a range of technologies in fluid dynamics and nature-inspired materials, including applications that require multistep and repeated reactions, such as microassays, medical diagnosis and solar desalination etc.
Published Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials



In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.
Published Optoelectronics gain spin control from chiral perovskites and III-V semiconductors



A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.
Published Nanorobot with hidden weapon kills cancer cells



Researchers have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumour microenvironment, sparing healthy cells.
Published Melanin from cuttlefish ink as a sustainable biomass resource



Melanin is a ubiquitous compound in nature, produced by many organisms. However, its potential as a biomass resource to produce value-added chemicals and materials remains relatively unexplored. In a recent study, researchers investigated the chemical decomposition of melanin derived from cuttlefish ink and showcased its application in the synthesis of biopolymer films and particles. Their efforts will hopefully pave the way to the adoption of melanin upcycling.