Showing 20 articles starting at article 1
Categories: Chemistry: Organic Chemistry, Engineering: Nanotechnology
Published Engineers design lookalike drug carrier to evade lung's lines of defense



Managing hard-to-treat respiratory illnesses like asthma and pulmonary fibrosis just got easier if a new drug-carrying molecule is as sneaky as its inventors think.
Published New nano-device could mean your run could power your electrical wearables



Your early morning run could soon help harvest enough electricity to power your wearable devices, thanks to new nanotechnology.
Published DNA tech offers both data storage and computing functions



Researchers have demonstrated a technology capable of a suite of data storage and computing functions -- repeatedly storing, retrieving, computing, erasing or rewriting data -- that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.
Published Catalyst for 'one-step' conversion of methane to methanol



Scientists have engineered a highly selective catalyst that can convert methane, a major component of natural gas, into methanol, an easily transportable liquid fuel, in a single, one-step reaction. This direct process for methane-to-methanol conversion runs at a temperature lower than required to make tea and exclusively produces methanol without additional byproducts.
Published Extraterrestrial chemistry with earthbound possibilities



Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.
Published First visualization of valence electrons reveals fundamental nature of chemical bonding



The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.
Published Quality control: Neatly arranging crystal growth to make fine thin films



Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.
Published Molecular wires with a twist



Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.
Published 'Molecular compass' points way to reduction of animal testing



Machine learning models have become increasingly popular for risk assessment of chemical compounds. However, they are often considered 'black boxes' due to their lack of transparency. To increase confidence in these models, researchers proposed carefully identifying the areas of chemical space where these models are weak. They developed an innovative software tool for this purpose, and the results of this research approach have just been published.
Published A new reaction to enhance aromatic ketone use in chemical synthesis



Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.
Published Investigating the interplay of folding and aggregation in supramolecular polymer systems



Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.
Published Morphable materials: Researchers coax nanoparticles to reconfigure themselves



A view into how nanoscale building blocks can rearrange into different organized structures on command is now possible with an approach that combines an electron microscope, a small sample holder with microscopic channels, and computer simulations, according to a new study.
Published Revolutionizing thermoelectric technology: Hourglass-shaped materials achieve a 360% efficiency boost



A groundbreaking technology has been unveiled that improves the efficiency of thermoelectric materials, which are key in converting waste heat into electricity, by altering their geometry to resemble an hourglass. Unlike previous research that solely depended on the material properties of thermoelectric substances, this new approach is expected to have widespread applications in thermoelectric power generation.
Published Research provides a roadmap for improving electrochemical performance



A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.
Published Quantum pumping in molecular junctions



Researchers have developed a new theoretical modelling technique that could potentially be used in the development of switches or amplifiers in molecular electronics.
Published Enhancing electron transfer for highly efficient upconversion OLEDs



Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.
Published Physicists throw world's smallest disco party



A new milestone has been set for levitated optomechanics as a group of scientists observed the Berry phase of electron spins in nano-sized diamonds levitated in vacuum.
Published Scientists create material that can take the temperature of nanoscale objects



Scientists recently discovered a one-dimensional nanoscale material whose color changes as temperature changes.
Published Exploring the structures of xenon-containing crystallites



Noble gases have a reputation for being unreactive, inert elements, but more than 60 years ago Neil Bartlett demonstrated the first way to bond xenon. He created XePtF6, an orange-yellow solid. Because it's difficult to grow sufficiently large crystals that contain noble gases, some of their structures -- and therefore functions -- remain elusive. Now, researchers have successfully examined tiny crystallites of noble gas compounds. They report structures of multiple xenon compounds.
Published Scientists achieve more than 98% efficiency removing nanoplastics from water



Linked to cardiovascular and respiratory diseases in people, nanoplastics continue to build up, largely unnoticed, in the world's bodies of water. The challenge remains to develop a cost-effective solution to get rid of nanoplastics while leaving clean water behind. That's where Mizzou comes in. Recently, researchers created a new liquid-based solution that eliminates more than 98% of these microscopic plastic particles from water.