Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Engineering: Nanotechnology
Published Laser-treated cork absorbs oil for carbon-neutral ocean cleanup



Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.
Published Magnetic with a pinch of hydrogen



Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.
Published New copper-catalyzed C-H activation strategy



Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.
Published Energy scientists unravel the mystery of gold's glow



EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Atom-by-atom: Imaging structural transformations in 2D materials



Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.
Published From defects to order: Spontaneously emerging crystal arrangements in perovskite halides



A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.
Published Two-dimensional nanomaterial sets record for expert-defying, counter-intuitive expansion



Engineers have developed a record-setting nanomaterial which when stretched in one direction, expands perpendicular to the applied force.
Published 'Nanostitches' enable lighter and tougher composite materials



In an approach they call 'nanostitching,' engineers used carbon nanotubes to prevent cracking in multilayered composites. The advance could lead to next-generation airplanes and spacecraft.
Published Trash to treasure -- researchers turn metal waste into catalyst for hydrogen



Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that could make hydrogen production more sustainable.
Published Cooler transformers could help electric grid



Simulations on the Stampede2 supercomputer of the Texas Advanced Computing Center (TACC) are helping scientists engineer solutions to overheating of grid transformers -- a critical component of the electric grid.
Published Researchers advance pigment chemistry with moon-inspired reddish magentas



A researcher who made color history in 2009 with a vivid blue pigment has developed durable, reddish magentas inspired by lunar mineralogy and ancient Egyptian chemistry.
Published A single atom layer of gold: Researchers create goldene



For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals.
Published Quantum electronics: Charge travels like light in bilayer graphene



An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.
Published A new spin on organic shampoo makes it sudsier, longer lasting



While there's no regulation in the U.S. for what's in organic shampoos, they tend to contain ingredients perceived as safe or environmentally friendly. However, these 'clean' shampoos separate and spoil faster than those made with synthetic stabilizers and preservatives. Now, researchers demonstrate that a simple process -- spinning organic shampoo at high speeds -- improved the final products' shelf lives and ability to clean hair.
Published Nanoscale movies shed light on one barrier to a clean energy future



New research is shedding light on one barrier to a clean energy future: corrosion. Using nanoscale imaging techniques, researchers have captured high-resolution videos of tiny crystals of ruthenium dioxide -- a key ingredient used to produce clean-burning hydrogen -- as they are eaten away by their acidic environment. The research could pave the way to more durable catalysts and dramatically extend the lifetime of devices needed to turn hydrogen green.
Published Nothing is everything: How hidden emptiness can define the usefulness of filtration materials



Voids, or empty spaces, exist within matter at all scales, from the astronomical to the microscopic. In a new study, researchers used high-powered microscopy and mathematical theory to unveil nanoscale voids in three dimensions. This advancement is poised to improve the performance of many materials used in the home and in the chemical, energy and medical industries -- particularly in the area of filtration.
Published New strategy for assessing the applicability of reactions



Chemists show that a machine-based method prevents widespread 'bias' in chemical publications.
Published Waterproof 'e-glove' could help scuba divers communicate



When scuba divers need to say 'I'm okay' or 'Shark!' to their dive partners, they use hand signals to communicate visually. But sometimes these movements are difficult to see. Now, researchers have constructed a waterproof 'e-glove' that wirelessly transmits hand gestures made underwater to a computer that translates them into messages. The new technology could someday help divers communicate better with each other and with boat crews on the surface.