Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Engineering: Nanotechnology
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Photography: One-stop solution for shaping and outlining objects



A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.
Published New frequency comb can identify molecules in 20-nanosecond snapshots



Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.
Published 'Plug and play' nanoparticles could make it easier to tackle various biological targets



Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.
Published How to protect biocatalysts from oxygen



There are high hopes for hydrogen as the key to the energy transition. A specific enzyme group found in algae and in bacteria can produce molecular hydrogen simply by catalyzing protons and electrons. However, the enzyme group is so sensitive to oxygen that commercial use of the hydrogen produced by this process as a green energy source is not yet possible. Researchers have now increased the oxygen stability of a hydrogen-producing enzyme by genetically generated channel blockages.
Published Cat-ching criminals with DNA from pet hairs



Cat hair could be the purr-fect way to catch criminals, according to researchers.
Published DNA Origami nanoturbine sets new horizon for nanomotors



Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Achieving large and uniform particle sizes



Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.
Published Unexpected behavior discovered in active particles



Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.
Published Researchers develop DANGER analysis tool for the safer design of gene editing



A team of researchers has developed a software tool that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The new analysis system overcomes these challenges and allows researchers to perform safer on- and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.
Published International team develops novel DNA nano engine



An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Electron-rich metals make ceramics tough to crack



Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.
Published Wearable device makes memories and powers up with the flex of a finger



Researchers have invented an experimental wearable device that generates power from a user's bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.
Published Going rogue: Scientists apply giant wave mechanics on a nanometric scale



Researchers have shown how the principles of rogue waves -- huge 30-meter waves that arise unexpectedly in the ocean -- can be applied on a nano scale, with dozens of applications from medicine to manufacturing.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.
Published Superlensing without a super lens: Physicists boost microscopes beyond limits



Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.
Published Using computer algorithms to find molecular adaptations to improve COVID-19 drugs



A new study focuses on using computer algorithms to generate adaptations to molecules in compounds for existing and potential medications that can improve those molecules' ability to bind to the main protease, a protein-based enzyme that breaks down complex proteins, in SARS-CoV-2, the virus that causes COVID-19.