Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Engineering: Nanotechnology
Published Nanoparticle vaccine could curb cancer metastasis to lungs by targeting a protein



Engineers have developed an experimental vaccine that could prevent the spread of metastatic cancers to the lungs. Its success lies in targeting a protein known to play a central role in cancer growth and spread, rather than targeting the primary tumor itself.
Published Art with DNA -- Digitally creating 16 million colors by chemistry



The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.
Published Harnessing molecular power: Electricity generation on the nanoscale



Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.
Published Novel hydrogel finds new aptamers, or 'chemical antibodies,' in days



A new method uses a hydrogel -- a polymer network that holds its shape and can expand when it takes in a large amount of water -- to retain 'high-affinity,' or well-fitting, aptamers while the rest of the aptamer candidates leave the gel in 60 hours.
Published Researchers develop organic nanozymes suitable for agricultural use



Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.
Published Novel catalyst for green production of fine chemicals and pharmaceuticals



Scientists have developed an innovative catalyst that achieves a significantly lower carbon footprint, paving the way for greener chemical and pharmaceutical manufacturing processes.
Published An electrical switch to control chemical reactions



New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society's needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group has discovered how to use an external electric field to control and accelerate a chemical reaction, like a 'switch'. This work could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.
Published Surprising discovery shows electron beam radiation can repair nanostructures



In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.
Published Ecotoxicity testing of micro- and nano-plastics



An international team of researchers has published the first harmonized exposure protocol for ecotoxicity testing of microplastics and nanoplastics.
Published Researchers create a neural network for genomics -- one that explains how it achieves accurate predictions



A team of computer scientists has created a neural network that can explain how it reaches its predictions. The work reveals what accounts for the functionality of neural networks--the engines that drive artificial intelligence and machine learning--thereby illuminating a process that has largely been concealed from users.
Published Discovery made about Fischer Tropsch process could help improve fuel production



A fundamental discovery about the Fischer Tropsch process, a catalytic reaction used in industry to convert coal, natural gas or biomass to liquid fuels, could someday allow for more efficient fuel production. Researchers discovered previously unknown self-sustained oscillations in the Fischer Tropsch process. They found that unlike many catalytic reactions which have one steady state, this reaction periodically moves back and forth from a high to a low activity state. The discovery means that these well-controlled oscillatory states might be used in the future to control the reaction rate and the yields of desired products.
Published The medicine of the future could be artificial life forms



Imagine a life form that doesn't resemble any of the organisms found on the tree of life. One that has its own unique control system, and that a doctor would want to send into your body. It sounds like a science fiction movie, but according to nanoscientists, it can—and should—happen in the future.
Published New research may make future design of nanotechnology safer with fewer side effects



A new study may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.
Published Graphene oxide reduces the toxicity of Alzheimer's proteins



A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.
Published Bioengineering breakthrough increases DNA detection sensitivity by 100 times



Researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.
Published Wearable sensor to monitor 'last line of defense' antibiotic



Researchers have combined earlier work on painless microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of a ‘last line of defense’ antibiotic.
Published Small but mighty new gene editor



A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient.
Published A deep look into the progression of Parkinson's Disease



Scientists have used cutting-edge imaging techniques to shed light on the progression of Parkinson's disease by studying how the main culprit, the protein alpha-synuclein, disrupts cellular metabolism.
Published An advance in cryo-EM could be a significant boon for research on potential cancer therapies



A technology called cryo-electron microscopy enables scientists to see the atomic structure of biological molecules in high resolution. But to date, it has been ineffective for imaging small molecules. A team of biochemists devised a solution that makes it possible to hold small protein molecules in place while they're being imaged, which will enable cryo-EM to produce much clearer images of such molecules. The advance is significant because small and medium-sized protein molecules are an area of focus in research on potential new drugs for cancer and other diseases.
Published Researchers dynamically tune friction in graphene



The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.