Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General
Published

Outstanding performance of organic solar cell using tin oxide      (via sciencedaily.com)     Original source 

Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers team up with national lab for innovative look at copper reactions      (via sciencedaily.com)     Original source 

Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.

Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology
Published

Cryo-imaging lifts the lid on fuel cell catalyst layers      (via sciencedaily.com)     Original source 

Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Nanowire networks learn and remember like a human brain      (via sciencedaily.com)     Original source 

Scientists have demonstrated nanowire networks can exhibit both short- and long-term memory like the human brain.

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Greener batteries      (via sciencedaily.com)     Original source 

Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Reinforcement learning: From board games to protein design      (via sciencedaily.com)     Original source 

An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

AI system can generate novel proteins that meet structural design targets      (via sciencedaily.com)     Original source 

A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Stab-resistant fabric gains strength from carbon nanotubes, polyacrylate      (via sciencedaily.com)     Original source 

Fabrics that resist knife cuts can help prevent injuries and save lives. But a sharp enough knife or a very forceful jab can get through some of these materials. Now, researchers report that carbon nanotubes and polyacrylate strengthen conventional aramid to produce lightweight, soft fabrics that provide better protection. Applications include anti-stabbing clothing, helmets and insoles, as well as cut-resistant packaging.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Graphene Environmental: General Geoscience: Geochemistry Physics: Optics
Published

New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation      (via sciencedaily.com)     Original source 

Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Novel nanocages for delivery of small interfering RNAs      (via sciencedaily.com)     Original source 

Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Geochemistry
Published

Using machine learning to find reliable and low-cost solar cells      (via sciencedaily.com)     Original source 

Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics
Published

Chemists propose ultrathin material for doubling solar cell efficiency      (via sciencedaily.com)     Original source 

Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists discover transformable nano-scale electronic devices      (via sciencedaily.com)     Original source 

The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.

Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

A novel platinum nanocluster for improved oxygen reduction reaction in fuel cells      (via sciencedaily.com)     Original source 

Hydrogen, derived from polymer electrolyte fuel cells (PEFCs), is an excellent source of clean energy. However, PEFCs require platinum (Pt), which is a limited resource. Some studies have shown that Pt nanoclusters (NCs) have higher activity than conventionally used Pt nanoparticles, however the origin of their higher activity is unclear. Now, researchers have synthesized a novel Pt NC catalyst with unprecedented activity and identified the reason for its high performance.

Chemistry: Biochemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

A solar hydrogen system that co-generates heat and oxygen      (via sciencedaily.com)     Original source 

Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.

Engineering: Nanotechnology
Published

Implantable device shrinks pancreatic tumors      (via sciencedaily.com)     Original source 

Nanomedicine researchers have found a way to tame pancreatic cancer -- one of the most aggressive and difficult to treat cancers -- by delivering immunotherapy directly into the tumor with a device that is smaller than a grain of rice.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Luminous molecules      (via sciencedaily.com)     Original source 

Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: Inorganic Chemistry Ecology: Sea Life Engineering: Nanotechnology Physics: Optics
Published

Pollution monitoring through precise detection of gold nanoparticles in woodlice      (via sciencedaily.com)     Original source 

Researchers introduce a novel imaging method to detect gold nanoparticles in woodlice. Their method, known as four-wave mixing microscopy, flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles' locations. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.