Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Engineering: Nanotechnology
Published Functional semiconductor made from graphene



Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.
Published Researchers boost signal amplification in perovskite nanosheets



Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.
Published Better microelectronics from coal



Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.
Published Revolutionary nanodrones enable targeted cancer treatment



A research team has unveiled a remarkable breakthrough in cancer treatment.
Published New material allows for better hydrogen-based batteries and fuel cells



Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.
Published Artificial intelligence unravels mysteries of polycrystalline materials



Researchers have used artificial intelligence to solve a difficult problem in crystal science. Seeking to understand why crystals develop tiny defects called dislocations, the researchers discovered unique defects that look like staircases. This discovery helps to better understand the defects in crystals that reduce the efficiency of complex polycrystalline materials used in our everyday electronic devices.
Published For this emergent class of materials, 'solutions are the problem'



Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.
Published Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices



Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.
Published Nanoprobe with a barcode



Protein-splitting enzymes play an important role in many physiological processes. Such proteases are generally present in an inactive state, only becoming activated under certain conditions. Some are linked to diseases like infections or cancer, making it important to have methods that can selectively detect active proteases. Scientists have introduced a new class of protease-activity sensors: gold nanoparticles equipped with peptide DNA.
Published Spinning up control: Propeller shape helps direct nanoparticles



Self-propelled nanoparticles could potentially advance drug delivery and lab-on-a-chip systems -- but they are prone to go rogue with random, directionless movements. Now, an international team of researchers has developed an approach to rein in the synthetic particles.
Published In a new light -- new approach overcomes long-standing limitations in optics



When you look up at the sky and see clouds of wondrous shapes, or struggle to peer through dense, hazy fog, you're seeing the results of 'Mie scattering', which is what happens with light interacts with particles of a certain size. There is a growing body of research that aims to manipulate this phenomenon and make possible an array of exciting technologies. Researchers have now developed a new means of manipulating Mie scattering from nanostructures.
Published Chance twists ordered carbon nanotubes into 'tornado films'



Scientists have developed two new methods to create ordered carbon nanotube films with either a left- or right-handed chiral pattern.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published New implants linked to less infection and better recovery from orthopedic surgery



Superior knee and hip replacements are a step closer after researchers further test and develop a new orthopedic implant coating which has the strong ability to ward off infection -- as well as stimulate bone growth. The technology consists of novel Silver-Gallium (Ag-Ga) nano-amalgamated particles that can be easily applied to medical device surfaces.
Published Breakthroughs in nanosized contrast agents and drug carriers through self-folding molecules



Self-folding polymers containing gadolinium forming nanosized complexes could be the key to enhanced magnetic resonance imaging and next-generation drug delivery. Thanks to their small size, low toxicity, and good tumor accumulation and penetration, these complexes represent a leap forward in contrast agents for cancer diagnosis, as well as neutron capture radiotherapy.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Photonic chip that 'fits together like Lego' opens door to semiconductor industry



A new semiconductor architecture integrates traditional electronics with photonic, or light, components could have application in advanced radar, satellites, wireless networks and 6G telecommunications. And it provides a pathway for a local semiconductor industry.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.