Showing 20 articles starting at article 161

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Biometric, Engineering: Nanotechnology

Return to the site home page

Computer Science: General Energy: Technology Engineering: Nanotechnology
Published

Researchers harness 2D magnetic materials for energy-efficient computing      (via sciencedaily.com)     Original source 

Researchers used ultrathin van der Waals materials to create an electron magnet that can be switched at room temperature. This type of magnet could be used to build magnetic processors or memories that would consume far less energy than traditional devices made from silicon.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Graphene research: Numerous products, no acute dangers found by study      (via sciencedaily.com)     Original source 

Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.

Energy: Batteries Energy: Technology Engineering: Nanotechnology
Published

New water batteries stay cool under pressure      (via sciencedaily.com)     Original source 

A global team of researchers has invented recyclable 'water batteries' that won't catch fire or explode. The team use water to replace organic electrolytes -- which enable the flow of electric current between the positive and negative terminals -- meaning their batteries can't start a fire or blow up -- unlike their lithium-ion counterparts.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

An environmentally friendly way to turn seafood waste into value-added products      (via sciencedaily.com)     Original source 

Reduce, reuse, recycle, and repurpose: These are all ways we can live more sustainably. One tricky aspect of recycling, though, is that sometimes the recycling process is chemically intensive, and this is the case for recycling one of the world's most abundant materials -- chitin. Researchers have tackled this problem and found a way to sustainably recover chitin from seafood waste.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Revolutionary breakthrough in solar energy: Most efficient QD solar cells      (via sciencedaily.com)     Original source 

A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.

Biology: Biochemistry Biology: Microbiology Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology
Published

Engineering a coating for disease-free produce      (via sciencedaily.com)     Original source 

Texas A&M researchers combine food-grade wax with essential oils to defend produce from bacteria.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Plastic recycling with a protein anchor      (via sciencedaily.com)     Original source 

Polystyrene is a widespread plastic that is essentially not recyclable when mixed with other materials and is not biodegradable. A research team has now introduced a biohybrid catalyst that oxidizes polystyrene microparticles to facilitate their subsequent degradation. The catalyst consists of a specially constructed 'anchor peptide' that adheres to polystyrene surfaces and a cobalt complex that oxidizes polystyrene.

Engineering: Biometric
Published

This tiny, tamper-proof ID tag can authenticate almost anything      (via sciencedaily.com)     Original source 

A cryptographic tag uses terahertz waves to authenticate items by recognizing the unique pattern of microscopic metal particles that are mixed into the glue that sticks the tag to the item's surface.

Computer Science: General Energy: Technology Engineering: Nanotechnology Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

New chip opens door to AI computing at light speed      (via sciencedaily.com)     Original source 

Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.

Engineering: Graphene Engineering: Nanotechnology
Published

First human trial shows 'wonder' material can be developed safely      (via sciencedaily.com)     Original source 

A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Engineering: Nanotechnology
Published

Nanoparticles that can light up the lymph node cancer cells otherwise undetectable by MRI      (via sciencedaily.com)     Original source 

Researchers have developed a new nanoparticle that can 'hitch a ride' on immune cells, or monocytes. Because of its tiny size, the particle can tag along directly into lymph nodes and help metastasis show up on MRIs where it would otherwise be too hard to detect. The process offers game-changing benefits for the early detection of cancer metastasis in the lymph nodes. While previously, metastasis could only be assessed by an increase in lymph node size; the new particles could lead to MRI contrast agents that can highlight metastatic cells in lymph nodes that may otherwise appear normal.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Exploring the effect of ring closing on fluorescence of supramolecular polymers      (via sciencedaily.com)     Original source 

The properties of supramolecular polymers are dictated by the self-assembled state of the molecules. However, not much is known about the impact of morphologies on the properties of nano- and mesoscopic-scale polymeric assemblies. Recently, a research team demonstrated how terminus-free toroids and random coils derived from the same luminescent molecule show different photophysical properties. The team also presented a novel method for purifying the toroidal structure.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General
Published

Scientists study the behaviors of chiral skyrmions in chiral flower-like obstacles      (via sciencedaily.com)     Original source 

Chiral skyrmions are a special type of spin textures in magnetic materials with asymmetric exchange interactions. They can be treated as quasi-particles and carry integer topological charges. Scientists have recently studied the random walk-behaviors of chiral skyrmions by simulating their dynamics within a ferromagnetic layer surrounded by chiral flower-like obstacles. The simulations reveal that the system behaves like a topological sorting device, indicating its use in information processing and computing devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Can hydrogels help mend a broken heart?      (via sciencedaily.com)     Original source 

You can mend a broken heart this valentine s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.

Energy: Batteries Engineering: Nanotechnology Environmental: General
Published

EVs that go 1,000 km on a single charge: Gel makes it possible      (via sciencedaily.com)     Original source 

Engineers apply electron beam technology to develop an integrated silicon-gel electrolyte system.

Biology: Biochemistry Biology: General Biology: Microbiology Chemistry: Biochemistry Engineering: Nanotechnology
Published

New approach for fast and cost-effective pathogen detection      (via sciencedaily.com)     Original source 

The ability to detect diseases at an early stage or even predict their onset would be of tremendous benefit to doctors and patients alike. A research team now develops intelligent, miniaturized biosensor devices and systems using nanomaterials to determine biomolecules and cells as well as biochemical reactions or processes as disease markers. The team's current publication describes the development of a portable, palm-sized test system that can simultaneously carry out up to thirty-two analyses of one sample.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products      (via sciencedaily.com)     Original source 

Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Structural isomerization of individual molecules using a scanning tunneling microscope probe      (via sciencedaily.com)     Original source 

An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.