Showing 20 articles starting at article 281

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Engineering: Nanotechnology

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Achieving large and uniform particle sizes      (via sciencedaily.com)     Original source 

Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Unexpected behavior discovered in active particles      (via sciencedaily.com)     Original source 

Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices      (via sciencedaily.com)     Original source 

Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices. 

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

International team develops novel DNA nano engine      (via sciencedaily.com)     Original source 

An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Electron-rich metals make ceramics tough to crack      (via sciencedaily.com)     Original source 

Engineers have developed a recipe to make a certain class of ceramics tougher and more resistant to cracking. The newfound toughness of these ceramics paves the way for their use in extreme applications, such as spacecraft and other hypersonic vehicles.

Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Wearable device makes memories and powers up with the flex of a finger      (via sciencedaily.com)     Original source 

Researchers have invented an experimental wearable device that generates power from a user's bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General
Published

Going rogue: Scientists apply giant wave mechanics on a nanometric scale      (via sciencedaily.com)     Original source 

Researchers have shown how the principles of rogue waves -- huge 30-meter waves that arise unexpectedly in the ocean -- can be applied on a nano scale, with dozens of applications from medicine to manufacturing.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Milestone: Miniature particle accelerator works      (via sciencedaily.com)     Original source 

Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Superlensing without a super lens: Physicists boost microscopes beyond limits      (via sciencedaily.com)     Original source 

Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Nanoparticle vaccine could curb cancer metastasis to lungs by targeting a protein      (via sciencedaily.com)     Original source 

Engineers have developed an experimental vaccine that could prevent the spread of metastatic cancers to the lungs. Its success lies in targeting a protein known to play a central role in cancer growth and spread, rather than targeting the primary tumor itself.

Chemistry: Biochemistry Energy: Technology Engineering: Graphene Physics: General
Published

From a five-layer graphene sandwich, a rare electronic state emerges      (via sciencedaily.com)     Original source 

When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General Offbeat: Plants and Animals
Published

Art with DNA -- Digitally creating 16 million colors by chemistry      (via sciencedaily.com)     Original source 

The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Physics: General
Published

Harnessing molecular power: Electricity generation on the nanoscale      (via sciencedaily.com)     Original source 

Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Surprising discovery shows electron beam radiation can repair nanostructures      (via sciencedaily.com)     Original source 

In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.

Engineering: Graphene Physics: General
Published

Scientists discover 'flipping' layers in heterostructures to cause changes in their properties      (via sciencedaily.com)     Original source 

Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Ecotoxicity testing of micro- and nano-plastics      (via sciencedaily.com)     Original source 

An international team of researchers has published the first harmonized exposure protocol for ecotoxicity testing of microplastics and nanoplastics.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General
Published

The medicine of the future could be artificial life forms      (via sciencedaily.com)     Original source 

Imagine a life form that doesn't resemble any of the organisms found on the tree of life. One that has its own unique control system, and that a doctor would want to send into your body. It sounds like a science fiction movie, but according to nanoscientists, it can—and should—happen in the future.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

New research may make future design of nanotechnology safer with fewer side effects      (via sciencedaily.com)     Original source 

A new study may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Graphene oxide reduces the toxicity of Alzheimer's proteins      (via sciencedaily.com)     Original source 

A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.