Showing 20 articles starting at article 341
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Space: Cosmology
Published Template for success: Shaping hard carbon electrodes for next-generation batteries



Sodium- and potassium-ion batteries are promising next-generation alternatives to the ubiquitous lithium-ion batteries (LIBs). However, their energy density still lags behind that of LIBs. To tackle this issue, researchers explored an innovative strategy to turn hard carbon into an excellent negative electrode material. Using inorganic zinc-based compounds as a template during synthesis, they prepared nanostructured hard carbon, which exhibits excellent performance in both alternative batteries.
Published Second-most distant galaxy discovered using James Webb Space Telescope



The second- and fourth-most distant galaxies ever observed have been discovered in a region of space known as Pandora's Cluster, or Abell 2744, using data from NASA's James Webb Space Telescope.
Published Milky Way-like galaxy found in the early universe



Astronomers have discovered the most distant barred spiral galaxy, similar to the Milky Way, that has been observed to date.
Published Understanding the dynamic behavior of rubber materials



Rubber-like materials can exhibit both spring-like and flow-like behaviors simultaneously, which contributes to their exceptional damping abilities. To understand the dynamic viscoelasticity of these materials, researchers have recently developed a novel system that can conduct dynamic mechanical analysis and dynamic micro X-ray computed tomography simultaneously. This technology can enhance our understanding of the microstructure of viscoelastic materials and pave the way for the development of better materials.
Published Scaling up nano for sustainable manufacturing



A research team has developed a high-performance coating material that self-assembles from 2D nanosheets, and which could significantly extend the shelf life of electronics, energy storage devices, health & safety products, and more. The researchers are the first to successfully scale up nanomaterial synthesis into useful materials for manufacturing and commercial applications.
Published 'Hot' new form of microscopy examines materials using evanescent waves



A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.
Published Researchers find gravitational lensing has significant effect on cosmic birefringence



Future missions will be able to find signatures of violating the parity-symmetry in the cosmic microwave background polarization more accurately after a pair of researchers has managed to take into account the gravitational lensing effect, reports a new study.
Published Researchers discover new ultra strong material for microchip sensors



Researchers have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.
Published Researchers engineer colloidal quasicrystals using DNA-modified building blocks



A new study unveils a novel methodology to engineer colloidal quasicrystals using DNA-modified building blocks. The implications of this breakthrough are far-reaching, offering a potential blueprint for the controlled synthesis of other complex structures previously considered beyond reach.
Published New twist on optical tweezers



Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy.
Published Giant planets cast a deadly pall



Giant gas planets can be agents of chaos, ensuring nothing lives on their Earth-like neighbors around other stars. New studies show, in some planetary systems, the giants tend to kick smaller planets out of orbit and wreak havoc on their climates.
Published Photography: One-stop solution for shaping and outlining objects



A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.
Published 'Plug and play' nanoparticles could make it easier to tackle various biological targets



Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.
Published DNA Origami nanoturbine sets new horizon for nanomotors



Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published First detection of heavy element from star merger



A team of scientists has used multiple space and ground-based telescopes to observe an exceptionally bright gamma-ray burst, GRB 230307A, and identify the neutron star merger that generated an explosion that created the burst. Webb also helped scientists detect the chemical element tellurium in the explosion's aftermath.
Published Achieving large and uniform particle sizes



Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.
Published Astrophysicists scan the Galaxy for signs of life



Astrophysicists are scanning the Universe for 'technosignatures' emanating from distant planets that would provide support for the existence of intelligent, alien life. Researchers plan to monitor millions of star systems.
Published Unexpected behavior discovered in active particles



Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.
Published Astronomers detect most distant fast radio burst to date



An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This 'fast radio burst' (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory's (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun's total emission over 30 years.