Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Space: Astrophysics
Published Engineering a coating for disease-free produce



Texas A&M researchers combine food-grade wax with essential oils to defend produce from bacteria.
Published Plastic recycling with a protein anchor



Polystyrene is a widespread plastic that is essentially not recyclable when mixed with other materials and is not biodegradable. A research team has now introduced a biohybrid catalyst that oxidizes polystyrene microparticles to facilitate their subsequent degradation. The catalyst consists of a specially constructed 'anchor peptide' that adheres to polystyrene surfaces and a cobalt complex that oxidizes polystyrene.
Published Astronomers report oscillation of our giant, gaseous neighbor



A few years ago, astronomers uncovered one of the Milky Way's greatest secrets: an enormous, wave-shaped chain of gaseous clouds in our sun's backyard, giving birth to clusters of stars along the spiral arm of the galaxy we call home. Naming this astonishing new structure the Radcliffe Wave, the team now reports that the Radcliffe Wave not only looks like a wave, but also moves like one -- oscillating through space-time much like 'the wave' moving through a stadium full of fans.
Published Measuring neutrons to reduce nuclear waste



Nuclear power is considered one of the ways to reduce dependence on fossil fuels, but how to deal with nuclear waste products is a concern. Radioactive waste products can be turned into more stable elements, but this process is not yet viable at scale. New research reveals a method to more accurately measure, predict and model a key part of the process to make nuclear waste more stable. This could lead to improved nuclear waste treatment facilities and also to new theories about how some heavier elements in the universe came to be.
Published New chip opens door to AI computing at light speed



Engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.
Published First human trial shows 'wonder' material can be developed safely



A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.
Published New nuclei can help shape our understanding of fundamental science on Earth and in the cosmos



In creating five new isotopes, scientists have brought the stars closer to Earth. The isotopes are known as thulium-182, thulium-183, ytterbium-186, ytterbium-187 and lutetium-190.
Published A star like a Matryoshka doll: New theory for gravastars



If gravitational condensate stars (or gravastars) actually existed, they would look similar to black holes to a distant observer. Two theoretical physicists have now found a new solution to Albert Einstein's theory of general relativity, according to which gravitational stars could be structured like a Russian matryoshka doll, with one gravastar located inside another.
Published Microscopy: Overcoming the traditional resolution limit for the fast co-tracking of molecules



Researchers have developed an innovative method to simultaneously track rapid dynamic processes of multiple molecules at the molecular scale.
Published Nanoparticles that can light up the lymph node cancer cells otherwise undetectable by MRI



Researchers have developed a new nanoparticle that can 'hitch a ride' on immune cells, or monocytes. Because of its tiny size, the particle can tag along directly into lymph nodes and help metastasis show up on MRIs where it would otherwise be too hard to detect. The process offers game-changing benefits for the early detection of cancer metastasis in the lymph nodes. While previously, metastasis could only be assessed by an increase in lymph node size; the new particles could lead to MRI contrast agents that can highlight metastatic cells in lymph nodes that may otherwise appear normal.
Published Exploring the effect of ring closing on fluorescence of supramolecular polymers



The properties of supramolecular polymers are dictated by the self-assembled state of the molecules. However, not much is known about the impact of morphologies on the properties of nano- and mesoscopic-scale polymeric assemblies. Recently, a research team demonstrated how terminus-free toroids and random coils derived from the same luminescent molecule show different photophysical properties. The team also presented a novel method for purifying the toroidal structure.
Published Scientists study the behaviors of chiral skyrmions in chiral flower-like obstacles



Chiral skyrmions are a special type of spin textures in magnetic materials with asymmetric exchange interactions. They can be treated as quasi-particles and carry integer topological charges. Scientists have recently studied the random walk-behaviors of chiral skyrmions by simulating their dynamics within a ferromagnetic layer surrounded by chiral flower-like obstacles. The simulations reveal that the system behaves like a topological sorting device, indicating its use in information processing and computing devices.
Published Can hydrogels help mend a broken heart?



You can mend a broken heart this valentine s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.
Published Physicists capture the first sounds of heat 'sloshing' in a superfluid



For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.
Published EVs that go 1,000 km on a single charge: Gel makes it possible



Engineers apply electron beam technology to develop an integrated silicon-gel electrolyte system.
Published Astrophysicists crack the case of 'disappearing' Sulphur in planetary nebulae



Two astrophysicists have finally solved a 20-year-old astrophysical puzzle concerning the lower-than-expected amounts of the element sulphur found in Planetary Nebulae (PNe) in comparison to expectations and measurements of other elements and other types of astrophysical objects. The expected levels of sulphur have long appeared to be 'missing in action'. However, they have now finally reported for duty after hiding in plain sight, as a result of leveraging highly accurate and reliable data.
Published New approach for fast and cost-effective pathogen detection



The ability to detect diseases at an early stage or even predict their onset would be of tremendous benefit to doctors and patients alike. A research team now develops intelligent, miniaturized biosensor devices and systems using nanomaterials to determine biomolecules and cells as well as biochemical reactions or processes as disease markers. The team's current publication describes the development of a portable, palm-sized test system that can simultaneously carry out up to thirty-two analyses of one sample.
Published Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products



Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.
Published A long, long time ago in a galaxy not so far away



Employing massive data sets collected through NASA's James Webb Space Telescope, astronomers are unearthing clues to conditions existing in the early universe. The team has catalogued the ages of stars in the Wolf--Lundmark--Melotte (WLM) galaxy, constructing the most detailed picture of it yet, according to the researchers. WLM, a neighbor of the Milky Way, is an active center of star formation that includes ancient stars formed 13 billion years ago.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe



An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.