Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Geoscience: Geochemistry
Published Wearable device makes memories and powers up with the flex of a finger



Researchers have invented an experimental wearable device that generates power from a user's bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.
Published Yeast speeds discovery of medicinal compounds in plants



Researchers have harnessed the power of baker's yeast to create a cost-effective and highly efficient approach for unraveling how plants synthesize medicinal compounds, and used the new method to identify key enzymes in a kratom tree.
Published Going rogue: Scientists apply giant wave mechanics on a nanometric scale



Researchers have shown how the principles of rogue waves -- huge 30-meter waves that arise unexpectedly in the ocean -- can be applied on a nano scale, with dozens of applications from medicine to manufacturing.
Published Drought conditions expose rivers to hotter water temperatures



A new study reveals how reduced water flows and rising atmospheric temperatures are set to heat our rivers -- creating major challenges for aquatic life, ecosystems, and society.
Published Ancient diamonds shine light on the evolution of Earth



Formed millions to billions of years ago, diamonds can shine light into the darkest and oldest parts of the Earth's mantle. The analysis of ancient, superdeep diamonds dug up from mines in Brazil and Western Africa, has exposed new processes of how continents evolved and moved during the early evolution of complex life on Earth. These diamonds that were formed between 650 and 450 million years ago on the base of the supercontinent Gondwana, were analysed by an international team of experts, and have shown how supercontinents such as Gondwana were formed, stabilised, and how they move around the planet.
Published Milestone: Miniature particle accelerator works



Particle accelerators are crucial tools in a wide variety of areas in industry, research and the medical sector. The space these machines require ranges from a few square meters to large research centers. Using lasers to accelerate electrons within a photonic nanostructure constitutes a microscopic alternative with the potential of generating significantly lower costs and making devices considerably less bulky. Until now, no substantial energy gains were demonstrated. In other words, it has not been shown that electrons really have increased in speed significantly. Two teams of laser physicists have just succeeded in demonstrating a nanophotonic electron accelerator.
Published Researchers: There is a need for more accurate accounting of nitrous oxide from agricultural crop residues



According to researchers, there is a need for changing the way of accounting greenhouse gases from agriculture. The current inventory of nitrous oxide from plant residues relies solely on the amount of nitrogen in the residues, while crucial factors such as the degradability of plant residues are not included. According to the researchers, this leads to misleading inventories, which also misrepresents possible mitigation measures.
Published Superlensing without a super lens: Physicists boost microscopes beyond limits



Attempts to break the diffraction limit with 'super lenses' have all hit the hurdle of extreme visual losses. Now physicists have shown a new pathway to achieve superlensing with minimal losses, breaking through the diffraction limit by a factor of nearly four times. The key to their success was to remove the super lens altogether.
Published Nanoparticle vaccine could curb cancer metastasis to lungs by targeting a protein



Engineers have developed an experimental vaccine that could prevent the spread of metastatic cancers to the lungs. Its success lies in targeting a protein known to play a central role in cancer growth and spread, rather than targeting the primary tumor itself.
Published Researchers study one of the world's darkest rivers



They set out to study the Congo Basin's carbon cycle and in the process have become aware of one of the world's darkest blackwater rivers: the Ruki. In the first study on this major jungle river, an international research team explains how this blackness comes about and what it says about the river system's carbon balance.
Published Germicidal UV lights could be producing indoor air pollutants, study finds



While useful for killing pathogens including SARS-CoV-2, 222-nanometer UV lights may produce harmful compounds in indoor spaces, and should be used with ventilation, researchers have found.
Published New recipe for efficient, environmentally friendly battery recycling



Researchers are now presenting a new and efficient way to recycle metals from spent electric car batteries. The method allows recovery of 100 per cent of the aluminum and 98 per cent of the lithium in electric car batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid -- an organic acid that can be found in the plant kingdom.
Published Art with DNA -- Digitally creating 16 million colors by chemistry



The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.
Published Research finds water quality in Gulf of Mexico improves when adding social costs to carbon emissions



Researchers took a closer look at what would happen to agriculture if there was an extra cost, or so-called social cost, added to fossil fuels, which are essential for making fertilizer used in farming. They found that while CO2 emissions would decline by as much as 50%, the cost of fertilizer would rise leading to a significant benefit on water quality by lessening fertilizer runoff contributing to the Gulf of Mexico's dead zone.
Published World may have crossed solar power 'tipping point'



The world may have crossed a 'tipping point' that will inevitably make solar power our main source of energy, new research suggests.
Published Decontamination method zaps pollutants from soil



A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.
Published Harnessing molecular power: Electricity generation on the nanoscale



Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.
Published AI models identify biodiversity from animal sounds in tropical rainforests



Animal sounds are a very good indicator of biodiversity in tropical reforestation areas. Researchers demonstrate this by using sound recordings and AI models.
Published Researchers develop organic nanozymes suitable for agricultural use



Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.
Published Signatures of the Space Age: Spacecraft metals left in the wake of humanity's path to the stars



Using tools hitched to the nose cone of their research planes and sampling more than 11 miles above the planet's surface, researchers have discovered significant amounts of metals in aerosols in the atmosphere, likely from increasingly frequent launches and returns of spacecraft and satellites. That mass of metal is changing atmospheric chemistry in ways that may impact Earth's atmosphere and ozone layer.