Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Engineering: Nanotechnology
Published Legacy of Indigenous stewardship of camas dates back more than 3,500 years



A new study found evidence that Indigenous groups in the Pacific Northwest were intentionally harvesting edible camas bulbs at optimal stages of the plant's maturation as far back as 3,500 years ago.
Published What pottery reveals about prehistoric Central European culinary traditions



The analysis of fat traces in over one hundred pottery vessels reveals deep changes in food consumption and preparation by communities living in central Germany between the Early Neolithic and the Late Bronze Age, as well as in their relation with innovations in pottery styles and decorations. In a groundbreaking study, researchers identified a generalized inclusion of dairy products in prehistoric diets, a preference in consuming pork with the arrival of communities from the Eurasian Steppe, and the importance of dairy products in funeral rites. Central Germany was a key region for the emergence of great prehistoric cultures, such as the Linear Pottery Culture, the Corded Ware Culture, the Bell Beaker populations and the Unetice Culture, one of the first state societies in Europe.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Blueprints of self-assembly



Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.
Published Evolutionary history of extinct duck revealed



The study's findings show mergansers arrived in the New Zealand region at least seven million years ago from the Northern Hemisphere, in a separate colonisation event to that which led to the Brazilian merganser.
Published Expanding on the fundamental principles of liquid movement



We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.
Published Ion irradiation offers promise for 2D material probing



Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Early arrival and expansion of palaeolithic people on Cyprus



The patterns of dispersal of early humans across continents and islands are hotly debated, but researchers have found that Pleistocene hunter-gatherers settled in Cyprus thousands of years earlier than previously thought. In examining the timing of the first human occupation of Cyprus, research found that large islands in the Mediterranean Sea were attractive and favorable destinations for palaeolithic peoples. These findings refute previous studies that suggested Mediterranean islands would have been unreachable and inhospitable for Pleistocene hunter-gatherer societies.
Published Green concrete recycling twice the coal ash is built to last



New modelling reveals that low-carbon concrete can recycle double the amount of coal ash compared to current standards, halve the amount of cement required and perform exceptionally well over time.
Published Researchers use artificial intelligence to boost image quality of metalens camera



Researchers have leveraged deep learning techniques to enhance the image quality of a metalens camera. The new approach uses artificial intelligence to turn low-quality images into high-quality ones, which could make these cameras viable for a multitude of imaging tasks including intricate microscopy applications and mobile devices.
Published Scientists develop an affordable sensor for lead contamination



A new system could enable simple, low-cost detectors for monitoring water for lead contamination, and potentially other heavy metals as well.
Published Research explores ways to mitigate the environmental toxicity of ubiquitous silver nanoparticles



Researchers have taken a key step toward closing the silver nanoparticles knowledge gap with a study that indicates the particles' shape and surface chemistry play key roles in how they affect aquatic ecosystems.
Published Transforming common soft magnets into a next-generation thermoelectric conversion materials by 3 minutes heat treatment



A research team has demonstrated that an iron-based amorphous alloy, widely used as a soft magnetic material in transformers and motors, can be transformed into a 'transverse' thermoelectric conversion material that converts electric and thermal currents in orthogonal directions, with just a short period of heat treatment. This is the first example that highlights the importance of microstructure engineering in the development of transverse thermoelectric conversion materials, and provides new design guidelines for materials development to realize environmentally friendly power generation and thermal management technologies using magnetic materials.
Published Discover optimal conditions for mass production of ultraviolet holograms



Scientists delve into the composition of nanocomposites for ultraviolet metasurface fabrication.
Published Swarms of miniature robots clean up microplastics and microbes, simultaneously



When old food packaging, discarded children's toys and other mismanaged plastic waste break down into microplastics, they become even harder to clean up from oceans and waterways. These tiny bits of plastic also attract bacteria, including those that cause disease. Researchers describe swarms of microscale robots (microrobots) that captured bits of plastic and bacteria from water. Afterward, the bots were decontaminated and reused.
Published 'Better than graphene' material development may improve implantable technology



Move over, graphene. There's a new, improved two-dimensional material in the lab. Borophene, the atomically thin version of boron first synthesized in 2015, is more conductive, thinner, lighter, stronger and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality -- or handedness -- on it, which could make for advanced sensors and implantable medical devices.
Published Researchers 'unzip' 2D materials with lasers



Researchers used commercially available tabletop lasers to create tiny, atomically sharp nanostructures in samples of a layered 2D material called hexagonal Boron Nitride (hBN). The new nanopatterning technique is a simple way to modify materials with light--and it doesn't involve an expensive and resource-intensive clean room.
Published In medieval England, leprosy spread between red squirrels and people, genome evidence shows



Evidence from archaeological sites in the medieval English city of Winchester shows that English red squirrels once served as an important host for Mycobacterium leprae strains that caused leprosy in people, researchers report.