Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Paleontology: Climate
Published 'Hot' new form of microscopy examines materials using evanescent waves



A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.
Published How salt from the Caribbean affects our climate



Past cold periods such as the Little Ice Age were associated with reduced strength of North Atlantic currents and increased surface salinity in the Caribbean. This was accompanied by disturbances in the distribution of salt to the north leading to longer, stronger cooling phases in the northern hemisphere.
Published Researchers discover new ultra strong material for microchip sensors



Researchers have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.
Published How a climate model can illustrate and explain ice-age climate variability



During the last ice age, the last glacial maximum about 20,000 years ago, the climate in the North Atlantic underwent much greater multi-centennial variability than it does in the present warm period. This is supported by evidence found in ice and seafloor cores. Researchers have now shown, based on a climate model, that internal mechanisms such as temperature and salinity distribution in the ocean are driving this multi-centennial variability.
Published Researchers engineer colloidal quasicrystals using DNA-modified building blocks



A new study unveils a novel methodology to engineer colloidal quasicrystals using DNA-modified building blocks. The implications of this breakthrough are far-reaching, offering a potential blueprint for the controlled synthesis of other complex structures previously considered beyond reach.
Published Study links changes in global water cycle to higher temperatures



A new study takes an important step toward reconstructing a global history of water over the past 2,000 years. Using geologic and biologic evidence preserved in natural archives -- including 759 different paleoclimate records from globally distributed corals, trees, ice, cave formations and sediments -- the researchers showed that the global water cycle has changed during periods of higher and lower temperatures in the recent past.
Published New twist on optical tweezers



Optical tweezers use laser light to manipulate small particles. A new method has been advanced using Stampede2 supercomputer simulations that makes optical tweezers safer to use for potential biological applications, such as cancer therapy.
Published New map of 20th century land use in Britain helps researchers demystify biodiversity change



Researchers have mapped how land use changed across Britain throughout the last century. The new map reveals how and where some 50 per cent of semi-natural grassland was lost, including 90 per cent of the country's lowland meadows and pasture, as the nation intensified its agriculture.
Published Photography: One-stop solution for shaping and outlining objects



A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.
Published 'Plug and play' nanoparticles could make it easier to tackle various biological targets



Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.
Published Meltwater flowing beneath Antarctic glaciers may be accelerating their retreat



A new Antarctic ice sheet modeling study suggests that meltwater flowing out to sea from beneath Antarctic glaciers is making them lose ice faster.
Published Mystery of volcanic tsunami solved after 373 years



The explosion of the underwater volcano Kolumbo in the Aegean Sea in 1650 triggered a destructive tsunami that was described by historical eye witnesses. A group of researchers has now surveyed Kolumbo's underwater crater with modern imaging technology and reconstructed the historical events. They found that the eyewitness accounts of the natural disaster can only be described by a combination of a landslide followed by an explosive eruption.
Published DNA Origami nanoturbine sets new horizon for nanomotors



Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.
Published Using sound to test devices, control qubits



Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material.
Published Climate change likely impacted human populations in the Neolithic and Bronze Age



Human populations in Neolithic Europe fluctuated with changing climates, according to a new study.
Published Achieving large and uniform particle sizes



Dispersions of polymer particles in a liquid phase (latexes) have many important applications in coatings technology, medical imaging, and cell biology. A team of researchers has now developed a method to produce stable polystyrene dispersions with unprecedentedly large, and uniform, particle sizes. Narrow size distributions are essential in many advanced technologies, but were previously difficult to produce photochemically.
Published Sediment core analysis supports new epoch characterized by human impact on planet



Scientists analyzed open-source data to track vegetation changes across North America since the end of the Pleistocene Epoch, and conclude that humans have had as much of an impact on the landscape as the retreat of the glaciers at the end of the Ice Age.
Published Raining cats and dogs: Global precipitation patterns a driver for animal diversity



A team has identified several factors to help answer a fundamental ecological question: why is there a ridiculous abundance of species some places on earth and a scarcity in others? What factors, exactly, drive animal diversity? They discovered that what an animal eats (and how that interacts with climate) shapes Earth's diversity.
Published Light, freshwater sticks to Greenland's east coast



Meltwater that runs along the east coast of Greenland, hardly enters the open ocean before reaching the western side of the island. In the changing climate, fresh water from Greenland and the Arctic could disrupt the circulation in the Atlantic Ocean.
Published Unexpected behavior discovered in active particles



Physicists have now shown that, depending on the extent to which the propulsion speed of active particles is dependent on their orientation, clusters in different shapes arise in many-particle systems. This might be a possible key to the realization of programmable matter.