Showing 20 articles starting at article 721
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Space
Published Dying stars' cocoons could be new source of gravitational waves



Although astrophysicists theoretically should be able to detect gravitational waves from a single, non-binary source, they have yet to uncover these elusive signals. Now researchers suggest looking at a new, unexpected and entirely unexplored place: The turbulent, energetic cocoons of debris that surround dying massive stars.
Published Early universe crackled with bursts of star formation, Webb shows



Among the most fundamental questions in astronomy is: How did the first stars and galaxies form? NASA's James Webb Space Telescope is already providing new insights into this question. One of the largest programs in Webb's first year of science is the JWST Advanced Deep Extragalactic Survey, or JADES, which will devote about 32 days of telescope time to uncover and characterize faint, distant galaxies. While the data is still coming in, JADES already has discovered hundreds of galaxies that existed when the universe was less than 600 million years old. The team also has identified galaxies sparkling with a multitude of young, hot stars.
Published Buckle up! A new class of materials is here



Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.
Published Eventually everything will evaporate, not only black holes



New theoretical research has shown that Stephen Hawking was likely right about black holes, although not completely. Due to Hawking radiation, black holes will eventually evaporate, but the event horizon is not as crucial as had been believed. Gravity and the curvature of spacetime cause this radiation too. This means that all large objects in the universe, like the remnants of stars, will eventually evaporate.
Published Mysterious dashes revealed in Milky Way's center



In the early 1980s, astronomers discovered gigantic, one-dimensional filaments dangling vertically near Sagittarius A*, our galaxy's central supermassive black hole. Now, astronomers have discovered a new population of filaments -- but these threads are much shorter and lie horizontally or radially, spreading out like spokes on a wheel from the black hole.
Published Researchers finds a way to reduce the overheating of semiconductor devices



Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.
Published The 'breath' between atoms -- a new building block for quantum technology



Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published Astrophysicists confirm the faintest galaxy ever seen in the early universe



After the Big Bang, the universe expanded and cooled sufficiently for hydrogen atoms to form. In the absence of light from the first stars and galaxies, the universe entered a period known as the cosmic dark ages. The first stars and galaxies appeared several hundred million years later and began burning away the hydrogen fog left over from the Big Bang, rendering the universe transparent, like it is today. Researchers have now confirmed the existence of a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic dark ages ended.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published World's fastest electron microscope



Researchers have succeeded in filming the interactions of light and matter in an electron microscope with attosecond time resolution.
Published A nanocrystal shines on and off indefinitely



Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.
Published NIRISS instrument on Webb maps an ultra-hot Jupiter's atmosphere



There's an intriguing exoplanet out there -- 400 light-years out there -- that is so tantalizing that astronomers have been studying it since its discovery in 2009. One orbit for WASP-18 b around its star that is slightly larger than our Sun takes just 23 hours. There is nothing like it in our Solar System. A new study about this exoplanet, an ultra-hot gas giant 10 times more massive than Jupiter.
Published Color-changing material shows when medications get too warm



Some foods and medicines, such as many COVID-19 vaccines, must be kept cold. As a step toward a robust, stable technique that could indicate when these products exceed safe limits, researchers report a class of brilliantly colored microcrystals in materials that become colorless over a wide range of temperatures and response times. As a proof of concept, the team packaged the color-changing materials into a vial lid and QR code.
Published Quest for alien signals in the heart of the Milky Way takes off



A graduate student is spearheading an extraordinary scientific endeavor -- a groundbreaking mission to uncover periodic signals emanating from the core of the Milky Way called the Breakthrough Listen Investigation for Periodic Spectral Signals (BLIPSS). Such repetitive patterns could be the key to unlocking the mysteries of extraterrestrial intelligence in our galaxy.
Published Towering plume of water escaping from Saturn moon



Scientists have observed a towering plume of water vapor more than 6,000 miles long -- roughly the distance from the U.S. to Japan -- spewing from the surface of Saturn's moon, Enceladus.
Published Biological specimens imaged with X-rays without damage



Scientists have managed to image delicate biological structures without damaging them. Their new technique generates high resolution X-ray images of dried biological material that has not been frozen, coated, or otherwise altered beforehand -- all with little to no damage to the sample. This method, which is also used for airport baggage scanning, can generate images of the material at nanometer resolution.
Published One-third of galaxy's most common planets could be in habitable zone



A third of the exoplanets orbiting common M dwarf stars have gentle enough orbits to potentially be in the habitable zone capable of hosting liquid water.
Published X-ray emissions from black hole jets vary unexpectedly, challenging leading model of particle acceleration



Black hole jets are known to emit x-rays, but how they accelerate particles to this high-energy state is still a mystery. Surprising new findings appear to rule out a leading theory, opening the door to reimagining how particle acceleration works. One model of how jets generate x-rays expects the jets' x-ray emissions to remain stable over long time scales. However, the new paper found that the x-ray emissions of a statistically significant number of jets varied over just a few years.
Published Protein-based nano-'computer' evolves in ability to influence cell behavior



The first protein-based nano-computing agent that functions as a circuit has been created. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.
Published Astronomers discover a key planetary system to understand the formation mechanism of the mysterious 'super-Earths'



A study presents the detection of a system of two planets slightly larger than Earth orbiting a cold star in a synchronized dance. Named TOI-2096, the system is located 150 light-years from Earth. This system, located 150 light-years from Earth, is one of the best candidates for a detailed study of their atmosphere with the JWST space telescope.