Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General Offbeat: Plants and Animals
Published

Art with DNA -- Digitally creating 16 million colors by chemistry      (via sciencedaily.com)     Original source 

The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Physics: General
Published

Harnessing molecular power: Electricity generation on the nanoscale      (via sciencedaily.com)     Original source 

Researchers tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. To create the device, they submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the molecular scale, and the strands are made of zinc oxide. When the zinc oxide material waves, bends, or deforms under motion, it generates electric potential.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Surprising discovery shows electron beam radiation can repair nanostructures      (via sciencedaily.com)     Original source 

In a surprising new study, researchers have found that the electron beam radiation that they previously thought degraded crystals can actually repair cracks in these nanostructures. The groundbreaking discovery provides a new pathway to create more perfect crystal nanostructures, a process that is critical to improving the efficiency and cost-effectiveness of materials that are used in virtually all electronic devices we use every day.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Ecotoxicity testing of micro- and nano-plastics      (via sciencedaily.com)     Original source 

An international team of researchers has published the first harmonized exposure protocol for ecotoxicity testing of microplastics and nanoplastics.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General
Published

The medicine of the future could be artificial life forms      (via sciencedaily.com)     Original source 

Imagine a life form that doesn't resemble any of the organisms found on the tree of life. One that has its own unique control system, and that a doctor would want to send into your body. It sounds like a science fiction movie, but according to nanoscientists, it can—and should—happen in the future.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

New research may make future design of nanotechnology safer with fewer side effects      (via sciencedaily.com)     Original source 

A new study may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Could future AI crave a favorite food?      (via sciencedaily.com)     Original source 

Can artificial intelligence (AI) get hungry? Develop a taste for certain foods? Not yet, but a team of researchers is developing a novel electronic tongue that mimics how taste influences what we eat based on both needs and wants, providing a possible blueprint for AI that processes information more like a human being.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Instant evolution: AI designs new robot from scratch in seconds      (via sciencedaily.com)     Original source 

Researchers developed the first AI to date that can intelligently design robots from scratch by compressing billions of years of evolution into mere seconds. It's not only fast but also runs on a lightweight computer and designs wholly novel structures from scratch — without human-labeled, bias-filled datasets.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Bioengineering breakthrough increases DNA detection sensitivity by 100 times      (via sciencedaily.com)     Original source 

Researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Wearable sensor to monitor 'last line of defense' antibiotic      (via sciencedaily.com)     Original source 

Researchers have combined earlier work on  painless microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of a ‘last line of defense’ antibiotic.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers dynamically tune friction in graphene      (via sciencedaily.com)     Original source 

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

3D-printed plasmonic plastic enables large-scale optical sensor production      (via sciencedaily.com)     Original source 

Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General
Published

Strength is in this glass's DNA      (via sciencedaily.com)     Original source 

Scientists were able to fabricate a pure form of glass and coat specialized pieces of DNA with it to create a material that was not only stronger than steel, but incredibly lightweight.

Chemistry: Biochemistry Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

One-hour training is all you need to control a third robotic arm, study finds      (via sciencedaily.com) 

A new study has found that people can learn to use supernumerary robotic arms as effectively as working with a partner in just one hour of training.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Crystallization as the driving force      (via sciencedaily.com) 

Scientists have successfully developed nanomaterials using a so-called bottom-up approach. They exploit the fact that crystals often grow in a specific direction during crystallization. These resulting nanostructures, which appear as 'worm-like and decorated rods,' could be used in various technological applications.

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Physics: General
Published

Nanofluidic device generates power with saltwater      (via sciencedaily.com)     Original source 

There is a largely untapped energy source along the world's coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Nanoparticles made from plant viruses could be farmers' new ally in pest control      (via sciencedaily.com) 

Engineers have devised a new solution to control a major agricultural menace, root-damaging nematodes. Using plant viruses, the researchers created nanoparticles that can deliver pesticide molecules to previously inaccessible depths in the soil. This 'precision farming' approach could potentially minimize environmental toxicity and cut costs for farmers.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Scaling up the power of nanotechnology      (via sciencedaily.com) 

Researchers created a proof of concept of a nanocapsule -- a microscopic container -- capable of delivering a specific 'payload' to a targeted location. While beyond the scope of this study, the discovery could one day impact how drugs, nutrients and other types of chemical compounds are delivered within humans or plants.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Scientists successfully maneuver robot through living lung tissue      (via sciencedaily.com) 

Scientists have shown that their steerable lung robot can autonomously maneuver the intricacies of the lung, while avoiding important lung structures.