Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Earth and Climate
Published One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions



An international multidisciplinary team consisting of solar physicists, geophysicists, and historians from nine countries analysed observations of an extreme solar-terrestrial storm reported in historical records from February 1872. Their findings confirm that a moderate sunspot group triggered one of the largest magnetic storms ever recorded, almost covering the entire night sky with colourful aurorae in both hemispheres. If such an extreme storm occurred today, it would severely disrupt modern technological infrastructure. Their study emphasizes the importance of looking at historical records in light of modern scientific knowledge.
Published Photonic chip that 'fits together like Lego' opens door to semiconductor industry



A new semiconductor architecture integrates traditional electronics with photonic, or light, components could have application in advanced radar, satellites, wireless networks and 6G telecommunications. And it provides a pathway for a local semiconductor industry.
Published Harvesting more solar energy with supercrystals



Hydrogen is a building block for the energy transition. To obtain it with the help of solar energy, researchers have developed new high-performance nanostructures. The material holds a world record for green hydrogen production with sunlight.
Published Control over friction, from small to large scales



Friction is hard to predict and control, especially since surfaces that come in contact are rarely perfectly flat. New experiments demonstrate that the amount of friction between two silicon surfaces, even at large scales, is determined by the forming and rupturing of microscopic chemical bonds between them. This makes it possible to control the amount of friction using surface chemistry techniques.
Published Genomic study sheds light on how carnivorous Asian pitcher plants acquired signature insect trap



Scientists sequenced the genome of the East Asian pitcher plant, Nepenthes gracilis, a species of carnivorous plant related to Venus flytraps, as well as sundews, beets and spinach.
Published Sea fireflies synchronize their sparkle to seek soulmates



In sea fireflies' underwater ballet, the males sway together in perfect, illuminated synchronization, basking in the glow of their secreted iridescent mucus.
Published Broadband buzz: Periodical cicadas' chorus measured with fiber optic cables



Through an emerging technology called distributed fiber optic sensing, cables bringing high-speed internet to American households can be used to detect temperature changes, vibrations, and even sound. And periodical cicadas -- the insects that emerge by the billions every 13 or 17 years and make a racket with their mating calls -- are loud enough to be detected. A new study shows how fiber optic sensing could open new pathways for charting populations of these famously ephemeral bugs.
Published The waxy surface protecting plants might hold the key to developing stronger crops



Researchers have discovered that the waxy protective barrier around plants might play a role in sending chemical signals to other plants and insects.
Published Nextgen computing: Hard-to-move quasiparticles glide up pyramid edges



A new kind of 'wire' for moving excitons could help enable a new class of devices, perhaps including room temperature quantum computers.
Published Was 'witchcraft' in the Devil's Church in Koli based on acoustic resonance? The crevice cave has a unique soundscape



The national park of Koli in eastern Finland is home to a famous, 34-metre-long crevice cave known as Pirunkirkko, or Devil's Church in English. A new study investigates the acoustics of the Devil's Church and explores whether the acoustic properties of the cave could explain the beliefs associated with it, and why it was chosen as a place for activities and rituals involving sound.
Published Wave devouring propulsion: A revolutionary green technology for maritime sustainability



A new form of wave devouring propulsion (WDP) could power ships and help to cut greenhouse gas emissions in the maritime industry.
Published Sophisticated swarming: Bacteria support each other across generations



When bacteria build communities, they cooperate and share nutrients across generations. Researchers have been able to demonstrate this for the first time using a newly developed method. This innovative technique enables the tracking of gene expression during the development of bacterial communities over space and time.
Published AI finds formula on how to predict monster waves



Using 700 years' worth of wave data from more than a billion waves, scientists have used artificial intelligence to find a formula for how to predict the occurrence of these maritime monsters. Long considered myth, freakishly large rogue waves are very real and can split apart ships and even damage oil rigs.
Published Gold now has a golden future in revolutionizing wearable devices



Scientists have pioneered a novel approach to develop intelligent healthcare sensors using various gold nanowires.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Much more than waste: Tiny vesicles exchange genetic information between cells in the sea



Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.
Published Engineering bacteria to biosynthesize intricate protein complexes



Protein cages found in nature within microbes help weather its contents from the harsh intracellular environment -- an observation with many bioengineering applications. Researchers recently developed an innovative bioengineering approach using genetically modified bacteria; these bacteria can incorporate protein cages around protein crystals. This in-cell biosynthesis method efficiently produces highly customized protein complexes, which could find applications as advanced solid catalysts and functionalized nanomaterials.
Published Nanoparticles for optimized cancer therapy



Pancreatic cancer is one of the deadliest types of cancers in humans. It is the fourth leading cause of cancer-related deaths in the western world. The early stages of the disease often progress without symptoms, so diagnosis is usually very late.
Published Previously unknown luminescence revealed in ten deep sea species and an order of sea cucumbers



Researchers present evidence of previously unknown luminosity in 10 deep-sea species, suggesting underestimated diversity. These new discoveries include a member of the order Molpadia, which was previously thought not to be luminescent. The authors stress the importance of considering the ecological role of bioluminesence and the need for conservation.
Published 'Bouncing' comets could deliver building blocks for life to exoplanets



How did the molecular building blocks for life end up on Earth? One long-standing theory is that they could have been delivered by comets. Now, researchers have shown how comets could deposit similar building blocks to other planets in the galaxy.