Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Paleontology and Archeology
Published Fossil named 'Attenborough's strange bird' was the first in its kind without teeth



A new fossil, named 'Attenborough's strange bird' after naturalist and documentarian Sir David Attenborough, is the first of its kind to evolve a toothless beak. It's from a branch of the bird family tree that went extinct in the mass extinction 66 million years ago, and this strange bird is another puzzle piece that helps explain why some birds -- and their fellow dinosaurs -- went extinct, and others survived to today.
Published Modeling the origins of life: New evidence for an 'RNA World'



Scientists provide fresh insights on the origins of life, presenting compelling evidence supporting the 'RNA World' hypothesis. The study unveils an RNA enzyme that can make accurate copies of other functional RNA strands, while also allowing new variants of the molecule to emerge over time. These remarkable capabilities suggest the earliest forms of evolution may have occurred on a molecular scale in RNA, and also bring scientists one step closer to re-creating autonomous RNA-based life in the laboratory.
Published Spontaneous curvature the key to shape-shifting nanomaterials



Inspired by nature, nanotechnology researchers have identified 'spontaneous curvature' as the key factor determining how ultra-thin, artificial materials can transform into useful tubes, twists and helices.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Scientists ID burned bodies using technique used for extracting DNA from woolly mammoths, Neanderthals



A technique originally devised to extract DNA from woolly mammoths and other ancient archaeological specimens can be used to potentially identify badly burned human remains, according to research.
Published AI technique 'decodes' microscope images, overcoming fundamental limit



Researchers have developed a deep learning algorithm for removing systematic effects from atomic force microscopy images, enabling more precise profiles of material surfaces.
Published Slimming down a colossal fossil whale



A 30 million year-old fossil whale may not be the heaviest animal of all time after all, according to a new analysis by paleontologists. The new analysis puts Perucetus colossus back in the same weight range as modern whales and smaller than the largest blue whales ever recorded.
Published Want fewer microplastics in your tap water? Try boiling it first



Nano- and microplastics are seemingly everywhere -- water, soil and the air. While many creative strategies have been attempted to get rid of these plastic bits, one unexpectedly effective solution for cleaning up drinking water, specifically, might be as simple as brewing a cup of tea or coffee. Boiling and filtering calcium-containing tap water could help remove nearly 90% of the nano- and microplastics present.
Published Nanocarrier with escape reflex



Protein-based drugs must be transported into cells in a way that prevents their immediate degradation. A new approach is intended to ensure that they remain intact only in certain cells, such as cancer cells. A Japanese research team has introduced a nanocarrier that can 'escape' from endosomes before its cargo is destroyed there. This ability to escape is only triggered within the endosomes of certain tumor cells.
Published Change in gene code may explain how human ancestors lost tails



A genetic change in our ancient ancestors may partly explain why humans don't have tails like monkeys.
Published New disease testing component facilitates lower-cost diagnostics



Biomedical researchers have developed a new, less expensive way to detect nuclease digestion -- one of the critical steps in many nucleic acid sensing applications, such as those used to identify COVID-19 and other infectious diseases.
Published You may be breathing in more tiny nanoparticles from your gas stove than from car exhaust



Cooking on your gas stove can emit more nano-sized particles into the air than vehicles that run on gas or diesel, possibly increasing your risk of developing asthma or other respiratory illnesses, a new study has found.
Published Researchers harness 2D magnetic materials for energy-efficient computing



Researchers used ultrathin van der Waals materials to create an electron magnet that can be switched at room temperature. This type of magnet could be used to build magnetic processors or memories that would consume far less energy than traditional devices made from silicon.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published High resolution techniques reveal clues in 3.5 billion-year-old biomass



To learn about the first organisms on our planet, researchers have to analyze the rocks of the early Earth. These can only be found in a few places on the surface of the Earth. The Pilbara Craton in Western Australia is one of these rare sites: there are rocks there that are around 3.5 billion years old containing traces of the microorganisms that lived at that time. A research team has now found new clues about the formation and composition of this ancient biomass, providing insights into the earliest ecosystems on Earth.
Published Utah's Bonneville Salt Flats has long been in flux



It has been long assumed that Utah's Bonneville Salt Flats was formed as its ancient namesake lake dried up 13,000 years ago. But new research has gutted that narrative, determining these crusts did not form until several thousand years after Lake Bonneville disappeared, which could have important implications for managing this feature that has been shrinking for decades to the dismay of the racing community and others who revere the saline pan 100 miles west of Salt Lake City. Relying on radiocarbon analysis of pollen found in salt cores, the study concludes the salt began accumulating between 5,400 and 3,500 years ago, demonstrating how this geological feature is not a permanent fixture on the landscape.
Published Butterfly and moth genomes mostly unchanged despite 250 million years of evolution



Comparison of over 200 high-quality butterfly and moth genomes reveals key insights into their biology, evolution and diversification over the last 250 million years, as well as clues for conservation.
Published An awkward family reunion: Sea monsters are our cousins



The sea lamprey, a 500-million-year-old animal with a sharp-toothed suction cup for a mouth, is the thing of nightmares. A new study discovered that the hindbrain -- the part of the brain controlling vital functions like blood pressure and heart rate -- of both sea lampreys and humans is built using an extraordinarily similar molecular and genetic toolkit.
Published New water batteries stay cool under pressure



A global team of researchers has invented recyclable 'water batteries' that won't catch fire or explode. The team use water to replace organic electrolytes -- which enable the flow of electric current between the positive and negative terminals -- meaning their batteries can't start a fire or blow up -- unlike their lithium-ion counterparts.