Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Paleontology and Archeology
Published Excavated dolmen in Sweden one of the oldest in Scandinavia



The first analysis results now confirm that the grave in Tiarp is one of the oldest stone burial chambers in Sweden. The researchers noted that some parts of the people buried in the grave are missing, such as skulls and thigh bones, posing intriguing questions for archaeologists.
Published High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals



Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.
Published Locusts' sense of smell boosted with custom-made nanoparticles



Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.
Published Turning glass into a 'transparent' light-energy harvester



Physicists propose a novel way to create photoconductive circuits, where the circuit is directly patterned onto a glass surface with femtosecond laser light. The new technology may one day be useful for harvesting energy, while remaining transparent to light and using a single material.
Published DNA from preserved feces reveals ancient Japanese gut environment



DNA from ancient feces can offer archaeologists new clues about the life and health of Japanese people who lived thousands of years ago, according to a new study.
Published Breakthrough in muscle regeneration: Nanotech scaffolding supports tissue growth



MXene nanoparticle scaffolds have been shown to stimulate muscle growth, making them a promising option to treat muscle loss and damage. Now, researchers explain the molecular mechanisms behind their positive influence on muscle regeneration. This discovery can advance MXene scaffolds, potentially improving muscle reconstruction surgeries and establishing them as a standard medical practice for muscle recovery.
Published Hacking DNA to make next-gen materials



Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.
Published New pieces in the puzzle of first life on Earth



Microorganisms were the first forms of life on our planet. The clues are written in 3.5 billion-year-old rocks by geochemical and morphological traces, such as chemical compounds or structures that these organisms left behind. However, it is still not clear when and where life originated on Earth and when a diversity of species developed in these early microbial communities. Evidence is scarce and often disputed. Now, researchers have uncovered key findings about the earliest forms of life. In rock samples from South Africa, they found evidence dating to around 3.42 billion years ago of an unprecedentedly diverse carbon cycle involving various microorganisms. This research shows that complex microbial communities already existed in the ecosystems during the Palaeoarchaean period.
Published Discovering the physics behind 300-year-old firefighting methods



Inspired by a 1725 fire engine that pumped water at larger distances and higher speeds than previously possible, authors analyzed the pressure chamber's Windkessel effect to capture the physics behind this widely used, enduring technology. They compared the initial state of the chamber, the rate at which bucket brigades could pour water in (volumetric inflow), the length of time pressure builds, and the effects on output flow rate. Next, the authors plan to examine the physiological Windkessel involved in the heart-aorta system.
Published Plumber's nightmare structure in block polymers



Scientists solve a long-standing block copolymer research conundrum through polymer chain end modifications. The study garners substantial academic attention by achieving tangible manifestations of intricate polymer structures that were previously solely theoretical.
Published Student discovers 200-million-year-old flying reptile



Gliding winged-reptiles were amongst the ancient crocodile residents of the Mendip Hills in Somerset, England, researchers at the have revealed.
Published The megalodon was less mega than previously believed



A new study shows the Megalodon, a gigantic shark that went extinct 3.6 million years ago, was more slender than earlier studies suggested. This finding changes scientists' understanding of Megalodon behavior, ancient ocean life, and why the sharks went extinct.
Published DNA origami folded into tiny motor



Scientists have created a working nanoscale electomotor. The science team designed a turbine engineered from DNA that is powered by hydrodynamic flow inside a nanopore, a nanometer-sized hole in a membrane of solid-state silicon nitride. The tiny motor could help spark research into future applications such as building molecular factories or even medical probes of molecules inside the bloodstream.
Published Using magnetized neurons to treat Parkinson's disease symptoms



Electrical deep brain stimulation (DBS) is a well-established method for treating disordered movement in Parkinson's disease. However, implanting electrodes in a person's brain is an invasive and imprecise way to stimulate nerve cells. Researchers report a new application for the technique, called magnetogenetics, that uses very small magnets to wirelessly trigger specific, gene-edited nerve cells in the brain. The treatment effectively relieved motor symptoms in mice without damaging surrounding brain tissue.
Published Researchers create faster and cheaper way to print tiny metal structures with light



Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).
Published DNA becomes our 'hands' to construct advanced nanoparticle materials



A new paper describes a significant leap forward in assembling polyhedral nanoparticles. The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin 'invisibility cloaks' and ultrahigh-speed optical computing systems.
Published Despite intensive scientific analyses, this centaur head remains a mystery



For almost 200 years, archaeologists have been puzzled by a mysterious brown stain on the ancient Greek Parthenon temple in Greece. Now, researchers have conducted new scientific analyses, and their verdict is clear: The mystery remains.
Published The metalens meets the stars



Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.
Published Researchers optimize 3D printing of optically active nanostructures



The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.
Published New insight into frictionless surfaces is slippery slope to energy-efficient technology



Scientists have made an insight into superlubricity, where surfaces experience extremely low levels of friction. This could benefit future technologies by reducing energy lost to friction by moving parts.