Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Paleontology and Archeology
Published Ultrathin nanotech promises to help tackle antibiotic resistance


Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation -- which has undergone advanced pre-clinical trials -- is effective against a broad range of drug-resistant bacterial cells, including 'golden staph', which are commonly referred to as superbugs.
Published Super antifreeze in cells: The ability to survive in ice and snow developed in animals far earlier than we thought



More than 400 million years ago, an insect-like animal called the springtail developed a small protein that prevents its cells from freezing.
Published 'Monstrous births' and the making of race in the nineteenth-century United States



From the Middle Ages to the Enlightenment, 'monstrous births' -- malformed or anomalous fetuses -- were, to Western medicine, an object of superstition. In 19th-century America, they became instead an object of the 'modern scientific study of monstrosity,' a field formalized by French scientist Isidore Geoffroy Saint-Hilaire. This clinical turn was positioned against the backdrop of social, political, and economic activity that codified laws governing slavery, citizenship, immigration, family, wealth, and access to resources.
Published Fossil spines reveal deep sea's past



Right at the bottom of the deep sea, the first very simple forms of life on earth probably emerged a long time ago. Today, the deep sea is known for its bizarre fauna. Intensive research is being conducted into how the number of species living on the sea floor have changed in the meantime. Some theories say that the ecosystems of the deep sea have emerged again and again after multiple mass extinctions and oceanic upheavals. Today's life in the deep sea would thus be comparatively young in the history of the Earth. But there is increasing evidence that parts of this world are much older than previously thought.
Published Human shoulders and elbows first evolved as brakes for climbing apes



Researchers report that the flexible shoulders and elbows that allow us to throw a football or reach a high shelf may have evolved as a natural braking system that let our primate ancestors get out of trees without dying. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and small monkeys called mangabeys. While the animals climb up trees similarly, the researchers found that the shallow, rounded shoulder joints and shortened elbow bones that chimps have -- similar to humans -- allow them to fully extend their arms above their heads when climbing down, holding onto branches like a person going down a ladder to support their greater weight. When early humans left forests for the grassy savanna, these versatile appendages would have been essential for gathering food and using tools for hunting and defense. The findings are among the first to identify the significance of 'downclimbing' in the evolution of apes and early humans.
Published Atomic-scale spin-optical laser: New horizon of optoelectronic devices


Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.
Published Atomically-precise quantum antidots via vacancy self-assembly


Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
Published Peering into nanofluidic mysteries one photon at a time



Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.
Published Researchers develop ultra-sensitive photoacoustic microscopy for wide biomedical application potential


Optical-resolution photoacoustic microscopy is an up-and-coming biomedical imaging technique for studying a broad range of diseases, such as cancer, diabetes and stroke. But its insufficient sensitivity has been a longstanding obstacle for its wider application. Recently, a research team developed a multi-spectral, super-low-dose photoacoustic microscopy system with a significant improvement in the system sensitivity limit, enabling new biomedical applications and clinical translation in the future.
Published The scent of the afterlife unbottled in new study of ancient Egyptian mummification balms



A team of researchers has recreated one of the scents used in the mummification of an important Egyptian woman more than 3500 years ago.
Published Three-eyed distant relative of insects and crustaceans reveals amazing detail of early animal evolution



Scientists use cutting edge scanning technology to reconstruct 'fossil monster' that lived half a billion years ago. The creature's soft anatomy was well-preserved, allowing it to be imaged almost completely: It fills a gap in our understanding of the evolution of arthropods such as insects and crustaceans.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published Scientists invent micrometers-thin battery charged by saline solution that could power smart contact lenses


Scientists have developed a flexible battery as thin as a human cornea, which stores electricity when it is immersed in saline solution, and which could one day power smart contact lenses.
Published DNA chips as storage media of the future: What challenges need to be overcome


In the form of DNA, nature shows how data can be stored in a space-saving and long-term manner. Bioinformatics specialists are developing DNA chips for computer technology. Researchers show how a combination of molecular biology, nanotechnology, novel polymers, electronics and automation, coupled with systematic development, could make DNA data storage useful for everyday use possible in a few years.
Published Newly discovered 'primitive cousins of T rex' shed light on the end of the age of dinosaurs in Africa



Researchers have discovered the fossils of two new abelisaurs in Morocco, showing the diversity of dinosaurs in this region at the end of the Cretaceous period.
Published Listening to nanoscale earthquakes


A recent study presents an exciting new way to listen to 'the crackling' noise of atoms shifting at nanoscale when materials are deformed, providing potential improved methods for discontinuities in novel, new materials, such as those proposed for future domain-wall electronics. 'Crackling noise microscopy' presents a new opportunity for generating advanced knowledge about nanoscale features across a wide range of applications and material systems.
Published The trio -- nickel, palladium, and platinum -- for enhanced hydrogen evolution


A research team enhanced hydrogen evolution catalyst through stepwise deposition.
Published Researchers extract ancient DNA from a 2,900-year-old clay brick, revealing a time capsule of plant life



For the first time, a group of researchers have successfully extracted ancient DNA from a 2,900-year-old clay brick. The analysis provides a fascinating insight into the diversity of plant species cultivated at that time and place, and could open the way to similar studies on clay material from other sites and time periods.
Published Did sabertooth tigers purr or roar?



When a sabertooth tiger called out, what noise did it make -- a mighty roar or a throaty purr? A new study examined the data behind the arguments for each vocalization and found that the answer was more nuanced than they thought -- and that it could depend on the shape of a few small bones.
Published Stabilizing precipitate growth at grain boundaries in alloys


Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.