Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Engineering: Nanotechnology
Published Cats purrfectly demonstrate what it takes to trust robots



Would you trust a robot to look after your cat? New research suggests it takes more than a carefully designed robot to care for your cat, the environment in which they operate is also vital, as well as human interaction.
Published New work extends the thermodynamic theory of computation



Physicists and computer scientists have recently expanded the modern theory of the thermodynamics of computation. By combining approaches from statistical physics and computer science, the researchers introduce mathematical equations that reveal the minimum and maximum predicted energy cost of computational processes that depend on randomness, which is a powerful tool in modern computers.
Published Research explores ways to mitigate the environmental toxicity of ubiquitous silver nanoparticles



Researchers have taken a key step toward closing the silver nanoparticles knowledge gap with a study that indicates the particles' shape and surface chemistry play key roles in how they affect aquatic ecosystems.
Published Transforming common soft magnets into a next-generation thermoelectric conversion materials by 3 minutes heat treatment



A research team has demonstrated that an iron-based amorphous alloy, widely used as a soft magnetic material in transformers and motors, can be transformed into a 'transverse' thermoelectric conversion material that converts electric and thermal currents in orthogonal directions, with just a short period of heat treatment. This is the first example that highlights the importance of microstructure engineering in the development of transverse thermoelectric conversion materials, and provides new design guidelines for materials development to realize environmentally friendly power generation and thermal management technologies using magnetic materials.
Published Good vibrations: New tech may lead to smaller, more powerful wireless devices



What if your earbuds could do everything your smartphone can, but better? A new class of synthetic materials could allow for smaller devices that use less power.
Published 'Smart' contact lenses could someday enable wireless glaucoma detection



Most people with early-stage glaucoma don't know they have it, even though early treatment is key to reducing vision loss. While detecting a subtle increase in eye pressure helps doctors to diagnose glaucoma, it's challenging to monitor continuously, especially with the variety of temperatures eyes experience. Now, researchers report a prototype 'smart' contact lens that measures eye pressure accurately, regardless of temperature.
Published Manganese sprinkled with iridium: a quantum leap in green hydrogen production



Researchers report a new method that reduces the amount of iridium needed to produce hydrogen from water by 95%, without altering the rate of hydrogen production. This breakthrough could revolutionize our ability to produce ecologically friendly hydrogen and help usher in a carbon-neutral hydrogen economy.
Published 2D all-organic perovskites: potential use in 2D electronics



Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.
Published Robotic system feeds people with severe mobility limitations



Researchers have developed a robotic feeding system that uses computer vision, machine learning and multimodal sensing to safely feed people with severe mobility limitations, including those with spinal cord injuries, cerebral palsy and multiple sclerosis.
Published Generative AI that imitates human motion



Walking and running is notoriously difficult to recreate in robots. Now, a group of researchers has overcome some of these challenges by creating an innovative method that employs central pattern generators -- neural circuits located in the spinal cord that generate rhythmic patterns of muscle activity -- with deep reinforcement learning. The method not only imitates walking and running motions but also generates movements for frequencies where motion data is absent, enables smooth transition movements from walking to running, and allows for adapting to environments with unstable surfaces.
Published Discover optimal conditions for mass production of ultraviolet holograms



Scientists delve into the composition of nanocomposites for ultraviolet metasurface fabrication.
Published An epigenome editing toolkit to dissect the mechanisms of gene regulation



A recent study led to the development of a powerful epigenetic editing technology. The system unlocks the ability to precisely program chromatin modifications at any specific position in the genome, to understand their causal role in transcription regulation. This innovative approach will help to investigate the role of chromatin modifications in many biological processes, and to program desired gene activity responses, which may prove useful in disease settings.
Published Chemists produce new-to-nature enzyme containing boron



Chemists created an enzyme with boronic acid at its reactive center. This approach can produce more selective reactions with boron, and allows the use of directed evolution to improve its catalytic power.
Published 'Wraparound' implants represent new approach to treating spinal cord injuries



A tiny, flexible electronic device that wraps around the spinal cord could represent a new approach to the treatment of spinal injuries, which can cause profound disability and paralysis. A team of engineers, neuroscientists and surgeons developed the devices and used them to record the nerve signals going back and forth between the brain and the spinal cord. Unlike current approaches, the new devices can record 360-degree information, giving a complete picture of spinal cord activity.
Published Swarms of miniature robots clean up microplastics and microbes, simultaneously



When old food packaging, discarded children's toys and other mismanaged plastic waste break down into microplastics, they become even harder to clean up from oceans and waterways. These tiny bits of plastic also attract bacteria, including those that cause disease. Researchers describe swarms of microscale robots (microrobots) that captured bits of plastic and bacteria from water. Afterward, the bots were decontaminated and reused.
Published Why is breaking down plant material for biofuels so slow?



Tracking individual enzymes during the breakdown of cellulose for biofuel production has revealed how several roadblocks slow this process when using plant material that might otherwise go to waste. The research may lead to new ways to improve the breakdown process and make the non-edible parts of plants and other plant waste, such as forestry residue, a more competitive source of biofuels.
Published 'Better than graphene' material development may improve implantable technology



Move over, graphene. There's a new, improved two-dimensional material in the lab. Borophene, the atomically thin version of boron first synthesized in 2015, is more conductive, thinner, lighter, stronger and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality -- or handedness -- on it, which could make for advanced sensors and implantable medical devices.
Published Study sheds light on cancer cell 'tug-of-war'



Researchers used a breast cancer cell line panel and primary tumor explants from breast and cervical cancer patients to examine two different cellular contractility modes: one that generates collective tissue surface tension that keeps cell clusters compact and another, more directional, contractility that enables cells to pull themselves into the extracellular matrix. They found that more aggressive cells pull more strongly on the ECM than on themselves while noninvasive cells pull more strongly on themselves than on the ECM -- and that the different pulling behaviors are attributed to different structures of actin cytoskeleton inside the cells.
Published Bio-inspired materials' potential for efficient mass transfer boosted by a new twist on a century-old theory



The natural vein structure found within leaves -- which has inspired the structural design of porous materials that can maximize mass transfer -- could unlock improvements in energy storage, catalysis, and sensing thanks to a new twist on a century-old biophysical law.
Published Researchers 'unzip' 2D materials with lasers



Researchers used commercially available tabletop lasers to create tiny, atomically sharp nanostructures in samples of a layered 2D material called hexagonal Boron Nitride (hBN). The new nanopatterning technique is a simple way to modify materials with light--and it doesn't involve an expensive and resource-intensive clean room.