Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Lead-vacancy centers in diamond as building blocks for large-scale quantum networks      (via sciencedaily.com)     Original source 

A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Researchers create artificial cells that act like living cells      (via sciencedaily.com)     Original source 

Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.

Chemistry: General Engineering: Nanotechnology Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Laser-treated cork absorbs oil for carbon-neutral ocean cleanup      (via sciencedaily.com)     Original source 

Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.

Chemistry: Biochemistry Energy: Technology Physics: Optics
Published

Gentle defibrillation for the heart      (via sciencedaily.com)     Original source 

Using light pulses as a model for electrical defibrillation, scientists developed a method to assess and modulate the heart function. The research team has thus paved the way for an efficient and direct treatment for cardiac arrhythmias. This may be an alternative for the strong and painful electrical shocks currently used.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Mathematics: Modeling
Published

AI tool creates 'synthetic' images of cells for enhanced microscopy analysis      (via sciencedaily.com)     Original source 

Researchers have developed a method to use an image generation AI model to create realistic images of single cells, which are then used as 'synthetic data' to train an AI model to better carry out single-cell segmentation.

Chemistry: Biochemistry
Published

This alloy is kinky      (via sciencedaily.com)     Original source 

Researchers have uncovered a remarkable metal alloy that won t crack at extreme temperatures due to kinking, or bending, of crystals in the alloy at the atomic level. Unlike most materials, the new alloy keeps its shape and resists cracking at both high and low temperature extremes, making it potentially suitable for demanding applications like high-efficiency aerospace engines.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Physics: Optics
Published

Switching off the light to see better      (via sciencedaily.com)     Original source 

Researchers used structured light and switchable fluorescent molecules to reduce the background light from the out-of-plane regions of microscope samples. This method allowed for the acquisition of images that surpassed the conventional resolution limit, and it may be useful for further study of cell clusters and other biological systems.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Magnetic with a pinch of hydrogen      (via sciencedaily.com)     Original source 

Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New copper-catalyzed C-H activation strategy      (via sciencedaily.com)     Original source 

Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing
Published

Energy scientists unravel the mystery of gold's glow      (via sciencedaily.com)     Original source 

EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Light show in living cells      (via sciencedaily.com)     Original source 

Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.

Chemistry: Thermodynamics Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Atom-by-atom: Imaging structural transformations in 2D materials      (via sciencedaily.com)     Original source 

Silicon-based electronics are approaching their physical limitations and new materials are needed to keep up with current technological demands. Two-dimensional (2D) materials have a rich array of properties, including superconductivity and magnetism, and are promising candidates for use in electronic systems, such as transistors. However, precisely controlling the properties of these materials is extraordinarily difficult.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

From defects to order: Spontaneously emerging crystal arrangements in perovskite halides      (via sciencedaily.com)     Original source 

A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.

Biology: Biochemistry Biology: Microbiology Chemistry: Biochemistry
Published

E-tongue can detect white wine spoilage before humans can      (via sciencedaily.com)     Original source 

While the electronic tongue bears little physical resemblance to its namesake, the strand-like sensory probes of the 'e-tongue' still outperformed human senses when detecting contaminated wine in a recent study. In a recent experiment, the e-tongue identified signs of microorganisms in white wine within a week after contamination -- four weeks before a human panel noticed the change in aroma. This was also before those microbes could be grown from the wine in a petri-dish. Winemakers traditionally rely on these two methods, sniffing the wine and petri-dish testing, to identify potential wine 'faults' or spoilage.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: General Physics: General
Published

Two-dimensional nanomaterial sets record for expert-defying, counter-intuitive expansion      (via sciencedaily.com)     Original source 

Engineers have developed a record-setting nanomaterial which when stretched in one direction, expands perpendicular to the applied force.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Space: General
Published

'Nanostitches' enable lighter and tougher composite materials      (via sciencedaily.com)     Original source 

In an approach they call 'nanostitching,' engineers used carbon nanotubes to prevent cracking in multilayered composites. The advance could lead to next-generation airplanes and spacecraft.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Trash to treasure -- researchers turn metal waste into catalyst for hydrogen      (via sciencedaily.com)     Original source 

Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that could make hydrogen production more sustainable.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Marine Biology: Zoology Chemistry: Biochemistry Ecology: Animals Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Sea Life Environmental: General Geoscience: Oceanography
Published

New tagging method provides bioadhesive interface for marine sensors on diverse, soft, and fragile species      (via sciencedaily.com)     Original source 

Tagging marine animals with sensors to track their movements and ocean conditions can provide important environmental and behavioral information. Existing techniques to attach sensors currently largely rely on invasive physical anchors, suction cups, and rigid glues. While these techniques can be effective for tracking marine animals with hard exoskeletons and large animals such as sharks, individuals can incur physiological and metabolic stress during the tagging process, which can affect the quality of data collection. A newly developed soft hydrogel-based bioadhesive interface for marine sensors, referred to as BIMS, holds promise as an effective, rapid, robust, and non-invasive method to tag and track all sorts of marine species, including soft and fragile species. The BIMS tagging, which is also simple and versatile, can help researchers better understand animal behavior while also capturing oceanographic data critical for helping to better understand some impacts of climate change and for resource management.