Chemistry: Biochemistry Chemistry: General Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry      (via sciencedaily.com)     Original source 

Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Machine learning guides carbon nanotechnology      (via sciencedaily.com)     Original source 

Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Groundbreaking genome editing tools unlock new possibilities for precision medicine      (via sciencedaily.com)     Original source 

A team of researchers has achieved a major breakthrough in genome editing technology. They've developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.

Engineering: Nanotechnology Physics: Optics
Published

New breakthroughs for unlocking the potential of plasmonics      (via sciencedaily.com)     Original source 

Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Chemistry: Biochemistry
Published

Resin destroys coronavirus from plastic surfaces      (via sciencedaily.com)     Original source 

Researchers are currently developing anti-viral surfaces to decrease the spread of infectious diseases. A recent study found that a resin ingredient is effective against coronaviruses and strongly decreases their infectivity on plastic surfaces.

Chemistry: Biochemistry Physics: Optics
Published

A faster, more efficient imaging system for nanoparticles      (via sciencedaily.com)     Original source 

Scientists have developed a new system for imaging nanoparticles. It consists of a high-precision, short-wave infrared imaging technique capable of capturing the photoluminescence lifetimes of rare-earth doped nanoparticles in the micro- to millisecond range.

Engineering: Nanotechnology Physics: Optics
Published

Structural color ink: Printable, non-iridescent and lightweight      (via sciencedaily.com)     Original source 

A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints.

Chemistry: Biochemistry
Published

Using vibrator found in cell phones, researchers develop 3D tumor spheroids to screen for anti-cancer drugs      (via sciencedaily.com)     Original source 

Investigators have developed a low-cost, high-throughput device that can reliably generate uniform tumor spheroids. The study describes how to assemble the 'Do-It-Yourself (DIY)' device from parts totaling less than $7, including a coin-vibrating motor commonly found in cell phones.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals      (via sciencedaily.com)     Original source 

Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Physics: General
Published

Utilizing active microparticles for artificial intelligence      (via sciencedaily.com)     Original source 

Artificial intelligence using neural networks performs calculations digitally with the help of microelectronic chips. Physicists have now created a type of neural network that works not with electricity but with so-called active colloidal particles.The researchers describe how these microparticles can be used as a physical system for artificial intelligence and the prediction of time series.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Locusts' sense of smell boosted with custom-made nanoparticles      (via sciencedaily.com)     Original source 

Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.

Engineering: Nanotechnology Physics: Optics
Published

Turning glass into a 'transparent' light-energy harvester      (via sciencedaily.com)     Original source 

Physicists propose a novel way to create photoconductive circuits, where the circuit is directly patterned onto a glass surface with femtosecond laser light. The new technology may one day be useful for harvesting energy, while remaining transparent to light and using a single material.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Scientists design a two-legged robot powered by muscle tissue      (via sciencedaily.com)     Original source 

Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. This method allows the robot to walk and pivot.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

How to shift gears in a molecular motor      (via sciencedaily.com)     Original source 

Scientists have long strived to develop artificial molecular motors that can convert energy into directed motion. Researchers have now presented a solution to a challenging problem: how motion can be transferred in a controlled manner from one place to another through a 'molecular gear'. Molecular motors have the potential for use in, for example, energy storage applications and medicine.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Deep learning reveals molecular secrets of explosive perchlorate salts      (via sciencedaily.com)     Original source 

Perchlorate compounds are known for their explosive nature. To understand what makes these compounds so explosive, a team of researchers developed a novel deep learning-based method that analyses their crystal structure and molecular interactions to elucidate their physical properties. This novel technique avoids dangerous laboratory-based experiments and uses data to study the nature of compounds. Overall, the study marks a significant step towards data-driven and artificial intelligence-based methods for chemical research.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Cellular scaffolding rewired to make microscopic railways      (via sciencedaily.com)     Original source 

Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Autonomous synthesis robot uses AI to speed up chemical discovery      (via sciencedaily.com)     Original source 

Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry
Published

Innovative microscopy technique reveals secrets of lipid synthesis inside cells      (via sciencedaily.com)     Original source 

Researchers have made a pivotal discovery in the field of cellular microscopy. The team has successfully developed Two-Color Infrared Photothermal Microscopy (2C-IPM), a novel technology designed to investigate neutral lipids within lipid droplets of living cells. This new microscopy can be used with isotope labeling, which allows for the detailed monitoring of neutral lipid synthesis within individual lipid droplets.