Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: Quantum Physics
Published Researchers develop general framework for designing quantum sensors



Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.
Published Researchers identify unique phenomenon in Kagome metal



A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.
Published What no one has seen before -- simulation of gravitational waves from failing warp drive



Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.
Published Breaking new ground for computing technologies with electron-hole crystals



A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.
Published Organic nanozymes have broad applications from food and agriculture to biomedicine



Nanozymes are tiny, engineered substances that mimic the catalytic properties of natural enzymes, and they serve a variety of purposes in biomedicine, chemical engineering, and environmental applications. They are typically made from inorganic materials, including metal-based elements, which makes them unsuitable for many purposes due to their toxicity and high production costs. Organic-based nanozymes partially overcome some of these problems and have the potential for a broader range of applications, including food and agriculture, but they are still in the early stages of development. A new paper provides an overview of the current state of organic nanozymes and their future potential.
Published Dark matter: A camera trap for the invisible



AI-powered image recognition could give researchers a new tool in hunt for dark matter.
Published Researchers trap atoms, forcing them to serve as photonic transistors



Researchers have developed a means to realize cold-atom integrated nanophotonic circuits.
Published Plant-inspired polymers for water purification



Researchers have synthesized a bio-inspired polymer for water purification. The polymer was designed to mimic phytochelatin, a plant protein that selectively captures and neutralizes harmful heavy metal ions. The hyperconfinement of the polymer enabled a flow-through system and effectively removed cadmium ions from contaminated water, making it safe to drink. The system was selective for heavy metals and provides a new way to remove specific contaminants from water.
Published Optical fibers fit for the age of quantum computing



A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.
Published Atomic 'GPS' elucidates movement during ultrafast material transitions



Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.
Published Pioneering measurement of the acidity of ionic liquids using Raman spectroscopy



A study has made it possible to estimate experimentally the energy required to transfer protons from water to ionic liquids.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published 'Miracle' filter turns store-bought LEDs into spintronic devices



Scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field. Researchers replaced the electrodes of store-bought LEDs with a patented spin filter made from hybrid organic-inorganic halide perovskite.
Published Quantum sensor for the atomic world



In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Nonreciprocal interactions go nonlinear



Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Published A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine



Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
Published Better way to produce green hydrogen



Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Published Tackling industrial emissions begins at the chemical reaction



Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Researchers discover faster, more energy-efficient way to manufacture an industrially important chemical



The reactivity of zirconium on silicon nitride enhances the conversion of propane into propylene, a key commodity chemical needed to make polypropylene. This finding hints at the reactivity researchers might achieve with other nontraditional catalysts.