Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Physics: Quantum Physics
Published Golden ball mills as green catalysts



A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Published Molecular sponge for the electronics of the future



An international research team has succeeded in developing a new type of material in the rather young research field of covalent organic frameworks. The new two-dimensional polymer is characterized by the fact that its properties can be controlled in a targeted and reversible manner. This has brought the researchers a step closer to the goal of realizing switchable quantum states.
Published Reduction of esters by a novel photocatalyst



A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.
Published Quantum entanglement measures Earth rotation



Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published Self-assembling and disassembling swarm molecular robots via DNA molecular controller



Researchers have succeeded in developing a DNA-based molecular controller. Crucially, this controller enables the autonomous assembly and disassembly of molecular robots, as opposed to manually directing it.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Scientists preserve DNA in an amber-like polymer



With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.
Published Quantum data assimilation: A quantum leap in weather prediction



Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.
Published 'Synthetic' cell shown to follow chemical directions and change shape, a vital biological function



In a feat aimed at understanding how cells move and creating new ways to shuttle drugs through the body, scientists say they have built a minimal synthetic cell that follows an external chemical cue and demonstrates a governing principle of biology called 'symmetry breaking.'
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published Algae offer real potential as a renewable electricity source



The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.
Published New technique could help build quantum computers of the future



Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.
Published Switching nanomagnets using infrared lasers



Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.
Published 'Quantum optical antennas' provide more powerful measurements on the atomic level



A multi-institutional team has created atomic optical antennas in solids. The team used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional atomic antenna structures.
Published Changes Upstream: RIPE team uses CRISPR/Cas9 to alter photosynthesis for the first time



Scientists used CRISPR/Cas9 to increase gene expression in rice by changing its upstream regulatory DNA. While other studies have used the technology to knock out or decrease the expression of genes, this study, is an unbiased gene-editing approach to increase gene expression and downstream photosynthetic activity. The approach is more difficult than transgenic breeding, but could potentially preempt regulatory issues by changing DNA already within the plant, allowing the plants to get in the hands of farmers sooner.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Scientists 'read' the messages in chemical clues left by coral reef inhabitants



What species live in this coral reef, and are they healthy? Chemical clues emitted by marine organisms might hold that information. But in underwater environments, invisible compounds create a complex 'soup' that is hard for scientists to decipher. Now, researchers have demonstrated a way to extract and identify these indicator compounds in seawater. They found metabolites previously undetected on reefs, including three that may represent different reef organisms.