Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Anthropology: General, Physics: Quantum Physics

Return to the site home page

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Environmental: Ecosystems Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Woolly mammoths evolved smaller ears and woolier coats over the 700,000 years that they roamed the Siberian steppes      (via sciencedaily.com)     Original source 

A team of researchers compared the genomes of woolly mammoths with modern day elephants to find out what made woolly mammoths unique, both as individuals and as a species. The investigators report that many of the woolly mammoth's trademark features -- including their woolly coats and large fat deposits -- were already genetically encoded in the earliest woolly mammoths, but these and other traits became more defined over the species' 700,000+ year existence. They also identified a gene with several mutations that may have been responsible for the woolly mammoth's miniscule ears.

Mathematics: Modeling Physics: General Physics: Quantum Physics
Published

Random matrix theory approaches the mystery of the neutrino mass      (via sciencedaily.com)     Original source 

Scientists analyzed each element of the neutrino mass matrix belonging to leptons and showed theoretically that the intergenerational mixing of lepton flavors is large. Furthermore, by using the mathematics of random matrix theory, the research team was able to demonstrate, as much as is possible at this stage, why the calculation of the squared difference of the neutrino masses are in close agreement with the experimental results in the case of the seesaw model with the random Dirac and Majorana matrices. The results of this research are expected to contribute to the further development of particle theory research, which largely remains a mystery.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

DMI allows magnon-magnon coupling in hybrid perovskites      (via sciencedaily.com)     Original source 

An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Absolute zero in the quantum computer      (via sciencedaily.com)     Original source 

Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.

Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology
Published

Elephants as a new model for understanding human evolution      (via sciencedaily.com)     Original source 

Human culture and language may be the result of 'self-domestication': an evolutionary process that leads to less aggressive and more prosocial individuals. A research team argues that elephants -- like humans and bonobos -- may also be self-domesticated. Elephants show many traits associated with self-domestication, such as prosocial behavior, playfulness and complex communication skills. This makes elephants an interesting new animal model for the evolution of prosociality.

Anthropology: Early Humans Anthropology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

One of Swedish warship Vasa's crew was a woman      (via sciencedaily.com) 

When the human remains found on board the Swedish warship Vasa (1628) were investigated, it was determined that the skeleton designated G was a man. New research now shows that the skeleton is actually from a woman. About thirty people died when Vasa sank on its maiden voyage in Stockholm, 1628. We cannot know who most of them were, only one person is named in the written sources. When the ship was raised in 1961 it was the scene of a comprehensive archaeological excavation, in which numerous human bones were found on board and examined.

Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

Yak milk consumption among Mongol Empire elites      (via sciencedaily.com) 

For the first time, researchers have pinpointed a date when elite Mongol Empire people were drinking yak milk, according to a new study.

Anthropology: Cultures Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

Researchers use 21st century methods to record 2,000 years of ancient graffiti in Egypt      (via sciencedaily.com) 

Researchers are learning more about ancient graffiti -- and their intriguing comparisons to modern graffiti -- as they produce a state-of-the-art 3D recording of the Temple of Isis in Philae, Egypt.

Anthropology: General Biology: Biochemistry
Published

New, exhaustive study probes hidden history of horses in the American West      (via sciencedaily.com) 

Indigenous peoples as far north as Wyoming and Idaho may have begun to care for horses by the first half of the 17th Century, according to a new study by researchers from 15 countries and multiple Native American groups.

Anthropology: Cultures Anthropology: General Archaeology: General
Published

Ancient DNA reveals Asian ancestry introduced to East Africa in early modern times      (via sciencedaily.com) 

The largest-yet analysis of ancient DNA in Africa, which includes the first ancient DNA recovered from members of the medieval Swahili civilization, has now broken the stalemate about the extent to which people from outside Africa contributed to Swahili culture and ancestry.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

Charming experiment finds gluon mass in the proton      (via sciencedaily.com)     Original source 

Nuclear physicists may have finally pinpointed where in the proton a large fraction of its mass resides. A recent experiment has revealed the radius of the proton's mass that is generated by the strong force as it glues together the proton's building block quarks.

Anthropology: General Archaeology: General
Published

Ancient African empires' impact on migration revealed by genetics      (via sciencedaily.com) 

Traces of ancient empires that stretched across Africa remain in the DNA of people living on the continent, reveals a new genetics study.

Anthropology: General Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Paleontology: Climate Paleontology: General
Published

A reconstruction of prehistoric temperatures for some of the oldest archaeological sites in North America      (via sciencedaily.com) 

Scientists often look to the past for clues about how Earth's landscapes might shift under a changing climate, and for insight into the migrations of human communities through time. A new study offers both by providing, for the first time, a reconstruction of prehistoric temperatures for some of the first known North American settlements.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Can a solid be a superfluid? Engineering a novel supersolid state from layered 2D materials      (via sciencedaily.com)     Original source 

Physicists predict that layered electronic 2D semiconductors can host a curious quantum phase of matter called the supersolid. This counterintuitive quantum material simultaneously forms a rigid crystal, and yet at the same time allows particles to flow without friction, with all the particles belong to the same single quantum state.

Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Highly charged ions melt nano gold nuggets      (via sciencedaily.com)     Original source 

Shooting ions is very different from shooting a gun: By firing highly charged ions onto tiny gold structures, these structures can be modified in technologically interesting ways. Surprisingly, the key is not the force of impact, but the electric charge of the projectiles.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophysics: The right twist      (via sciencedaily.com) 

Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New type of entanglement lets scientists 'see' inside nuclei      (via sciencedaily.com) 

Nuclear physicists have found a new way to see inside nuclei by tracking interactions between particles of light and gluons. The method relies on harnessing a new type of quantum interference between two dissimilar particles. Tracking how these entangled particles emerge from the interactions lets scientists map out the arrangement of gluons. This approach is unusual for making use of entanglement between dissimilar particles -- something rare in quantum studies.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Semiconductor lattice marries electrons and magnetic moments      (via sciencedaily.com) 

A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New simulation reveals secrets of exotic form of electrons called polarons      (via sciencedaily.com) 

Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.

Energy: Nuclear Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Neutrinos made by a particle collider detected      (via sciencedaily.com) 

Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.