Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Physics: Quantum Physics
Published Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones



A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.
Published Evidence for butchery of giant armadillo-like mammals in Argentina 21,000 years ago



Cut marks on fossils could be evidence of humans exploiting large mammals in Argentina more than 20,000 years ago, according to a new study.
Published Powerful new particle accelerator a step closer with muon-marshalling technology



New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together



An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Paving the way to extremely fast, compact computer memory



Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.
Published Breakthrough in quantum microscopy: Researchers are making electrons visible in slow motion



Physicists are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution. Their method has the potential to enable scientists to develop materials in a much more targeted way than before.
Published Light-induced Meissner effect



Researchers have developed a new experiment capable of monitoring the magnetic properties of superconductors at very fast speeds.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin



An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published A breakthrough on the edge: One step closer to topological quantum computing



Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published The plague may have caused the downfall of the Stone Age farmers



Ancient DNA from bones and teeth hints at a role of the plague in Stone Age population collapse. Contrary to previous beliefs, the plague may have diminished Europe's populations long before the major plague outbreaks of the Middle Ages, new research shows.
Published Archaeologists report earliest evidence for plant farming in east Africa



A trove of ancient plant remains excavated in Kenya helps explain the history of plant farming in equatorial eastern Africa, a region long thought to be important for early farming but where scant evidence from actual physical crops has been previously uncovered.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Ancient dingo DNA shows modern dingoes share little ancestry with modern dog breeds



A study of ancient dingo DNA revealed that the distribution of modern dingoes across Australia, including those on K'gari (formerly Fraser Island), pre-dates European colonization and interventions like the dingo-proof fence.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Extinct humans survived on the Tibetan plateau for 160,000 years



Bone remains found in a Tibetan cave 3,280 m above sea level indicate an ancient group of humans survived here for many millennia.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Neutrons on classically inexplicable paths



Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.
Published Layers of carbonate provide insight into the world of the ancient Romans



Archaeologists face a major challenge when they intend to acquire information about buildings or facilities of which only ruins remain. This was a particular challenge for the remnants of the Roman water mills in Barbegal in Southern France, dating back to the 2nd century CE. This unique industrial complex consisted of 16 water wheels placed in parallel rows. Little could at first be deduced about the site from these now scant ruins -- except that the wheels were supplied by an aqueduct that brought water from the surrounding hills. Researchers have now unraveled the history of the mill complex using calcium carbonate deposits that are now stored in the Archaeological Museum of Arles. These deposits had formed towards the end of the roughly 100-year operational life of the Barbegal water mills on the sides and base of the wooden supply system that conveyed the water to the wheels.
Published Visual explanations of machine learning models to estimate charge states in quantum dots



To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.