Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Fossils, Physics: Quantum Physics
Published Light and sound waves reveal negative pressure


Negative pressure is a rare and challenging-to-detect phenomenon in physics. Using liquid-filled optical fibers and sound waves, researchers have now discovered a new method to measure it. In collaboration with the Leibniz Institute of Photonic Technologies in
Published Pollen analysis suggests peopling of Siberia and Europe by modern humans occurred during a major Pleistocene warming spell



A new study appearing in Science Advances compares Pleistocene vegetation communities around Lake Baikal in Siberia, Russia, to the oldest archeological traces of Homo sapiens in the region. The researchers use the 'remarkable evidence' to tell a compelling story from 45,000-50,000 years ago with new detail: how the first humans migrated across Europe and Asia.
Published Dinosaur feathers reveal traces of ancient proteins



Palaeontologists have discovered X-ray evidence of proteins in fossil feathers that sheds new light on feather evolution.
Published Shh! Quiet cables set to help reveal rare physics events


Newly developed ultra-low radiation cables reduce background noise for neutrino and dark matter detectors.
Published New study reveals a long history of violence in ancient hunter-gatherer societies



Violence was a consistent part of life among ancient communities of hunter-gatherers, according to a new study that looked for signs of trauma on 10,000-year-old skeletal remains from burial sites in northern Chile.
Published Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle



A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.
Published Prehistoric fish fills 100 million year gap in evolution of the skull



X-rays of an ancient jawless fish shows earliest-known example of internal cartilage skull, unlike that of any other known vertebrate.
Published RNA for the first time recovered from an extinct species



A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.
Published New clues to the nature of elusive dark matter


A team of international researchers has uncovered further clues in the quest for insights into the nature of dark matter. The key to understanding this mystery could lie with the dark photon, a theoretical massive particle that may serve as a portal between the dark sector of particles and regular matter.
Published Nature's great survivors: Flowering plants survived the mass extinction that killed the dinosaurs



A new study by researchers from the University of Bath (UK) and Universidad Nacional Autónoma de México (Mexico) shows that flowering plants escaped relatively unscathed from the mass extinction that killed the dinosaurs 66 million years ago. Whilst they suffered some species loss, the devastating event helped flowering plants become the dominant type of plant today.
Published Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter


Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.
Published Researchers make a significant step towards reliably processing quantum information


Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.
Published St Helena's 'liberated' Africans came from West Central Africa between northern Angola and Gabon



Between 1840 and 1867, thousands of enslaved Africans who had been 'liberated' from slave ships intercepted by the British Royal Navy were taken to the South Atlantic island of St Helena. But little is written in history books or otherwise known about the lives of these individuals. Now, ancient DNA analyses offer the first direct evidence for the origins of St Helena's liberated Africans.
Published Machine learning contributes to better quantum error correction


Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.
Published Pioneering research sheds surprising new light on evolution of plant kingdom



A new study has uncovered intriguing insights into the evolution of plant biology, effectively rewriting the history of how they evolved over the past billion years.
Published Atomically-precise quantum antidots via vacancy self-assembly


Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.