Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Environmental: Biodiversity, Physics: Quantum Computing
Published Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet


A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.
Published Machine learning takes materials modeling into new era


The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.
Published Researchers grow precise arrays of nanoLEDs


A new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.
Published Finding the flux of quantum technology



We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.
Published Research breakthrough could be significant for quantum computing future



Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.
Published Researchers make a quantum computing leap with a magnetic twist



Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.
Published 'Toggle switch' can help quantum computers cut through the noise



What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.
Published How coral reefs can survive climate change



Similar to the expeditions of a hundred or two hundred years ago, the Tara Pacific expedition lasted over two years. The goal: to research the conditions for life and survival of corals. The ship crossed the entire Pacific Ocean, assembling the largest genetic inventory conducted in any marine system to date. The team's 70 scientists from eight countries took around 58,000 samples from the hundred coral reefs studied.
Published Human impact on wildlife even in protected areas



The largest long-term standardized camera-trap survey to date finds that human activity impacts tropical mammals living in protected areas and sheds light on how different species are affected based on their habitat needs and anthropogenic stressors.
Published Nanophotonics: Coupling light and matter



Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published Traditional methods cannot give us the insights we need to understand changing ecosystems



If we want to face up to the challenges posed by climate change and other global environmental changes, we need to bring complexity science into the mix with ecology and biodiversity conservation.
Published Conservation policies risk damaging global biodiversity, researchers argue



Rewilding, organic farming and the 'nature friendly farming' measures included in some government conservation policies risk worsening the global biodiversity crisis by reducing how much food is produced in a region, driving up food imports and increasing environmental damage overseas.
Published Combining twistronics with spintronics could be the next giant leap in quantum electronics



Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.
Published Climate change could lead to 'widespread chaos' for insect communities



New research explores how a warming world could impact ecosystems and derail the development of new species.
Published New research reveals the impact of different species and their traits on human wellbeing



New research has revealed that well-functioning ecosystems are crucial to human health and wellbeing, with human-biodiversity interactions delivering wellbeing gains equating to substantial healthcare cost-savings, when scaled-up across populations.
Published Supersized fruit eater database on climate change frontline



To conserve precious and fragile biodiversity hotspots, a crucial step is knowing how the fruit eaters are doing. To assist in that, scientists and students have supersized a database to keep track of such animals and birds.
Published Cryo conservation: A cool solution to saving species from extinction



In the face of the biodiversity crisis, and alarming data showing a 69% decline in global animal populations since 1970, researchers are banking on a cool solution to help save species from extinction. Much like egg-freezing is used to preserve human fertility options for a later date, the cryo-freezing of genetic samples taken from animals may play an essential role in curbing species extinctions. A new study sheds light on the immense potential of living cell banks, also known as cryobanks, to contribute to global conservation priorities.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.