Showing 20 articles starting at article 1261
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Physics: Quantum Computing
Published Douglas-fir in Klamath Mountains are in 'decline spiral'


Increases in mortality among Douglas-fir in the Klamath Mountains are the result of multiple factors that have the iconic tree in a 'decline spiral' in parts of the region.
Published Biodiversity amid climate change


Fewer parasites in U.S. waters might be seen by many as a good thing, but a biologist says the trend signals potential danger for fish and other wildlife.
Published Recycling: Researchers separate cotton from polyester in blended fabric


Researchers found they could separate blended cotton and polyester fabric using enzymes -- nature's tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric's component materials, thereby reducing textile waste.
Published Coffee plantations limit birds' diets


A new study explores a record of birds' diets preserved in their feathers and radio tracking of their movements to find that birds eat far fewer invertebrates in coffee plantations than in forests, suggesting that the disturbance of their ecosystem significantly impacts the birds' dietary options.
Published Scientists open door to manipulating 'quantum light'


How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Instrument adapted from astronomy observation helps capture singular quantum interference effects


By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.
Published Superconducting amplifiers offer high performance with lower power consumption


Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.
Published Qubits put new spin on magnetism: Boosting applications of quantum computers


Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.
Published Rivers and streams in the Andean Cordillera are hot spots for greenhouse gases emissions


Researchers show that rivers in the Andean mountains contribute 35% and 72% of riverine emissions of carbon dioxide (CO2 ) and methane (CH4 ) in the Amazon basin, the world's largest river.
Published New study counts the environmental cost of managing Japanese knotweed


New research has looked at the long-term environmental impact of different methods to control Japanese knotweed. Different ways of trying to control the invasive species have developed over the years but now, as sustainability becomes increasingly important, understanding the effect of these management methods is vital.This new study examines at the entire life cycle and long-term impacts of different management approaches.
Published Fossil site is 'Rosetta Stone' for understanding early life


Leading edge technology has uncovered secrets about a world-renowned fossil hoard that could offer vital clues about early life on Earth. Researchers who analyzed the 400 million-year-old cache, found in rural north-east Scotland, say their findings reveal better preservation of the fossils at a molecular level than was previously anticipated.
Published Electronic skin as flexible as crocodile skin


A research team has developed a crocodile-skin-inspired omnidirectionally stretchable pressure sensor.
Published Breakthrough in the understanding of quantum turbulence


Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.
Published New approach to harvesting aerial humidity with organic crystals


Researchers have reported a novel method of harvesting water from naturally occurring sources such as fog and dew.
Published Modelling superfast processes in organic solar cell material


In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.
Published Recovering tropical forests offset just one quarter of carbon emissions from new tropical deforestation and forest degradation


A pioneering global study has found deforestation and forests lost or damaged due to human and environmental change, such as fire and logging, are fast outstripping current rates of forest regrowth.
Published Designing more useful bacteria


In a step forward for genetic engineering and synthetic biology, researchers have modified a strain of Escherichia coli bacteria to be immune to natural viral infections while also minimizing the potential for the bacteria or their modified genes to escape into the wild.
Published Air pollution impairs successful mating of flies


A research team demonstrates that increased levels of ozone resulting from anthropogenic air pollution can degrade insect sex pheromones, which are crucial mating signals, and thus prevent successful reproduction. The oxidizing effect of ozone causes the carbon-carbon double bonds found in the molecules of many insect pheromones to break down. Therefore, the specific chemical mating signal is rendered dysfunctional. The researchers show this effect in the vinegar fly Drosophila melanogaster and nine other species of the genus Drosophila. Most remarkably, the disrupted sexual communication also led to male flies exhibiting unusual mating behavior towards ozonated males of their own species.
Published Mirror-image molecules can modify signaling in neurons


With the aid of some sea slugs, chemists have discovered that one of the smallest conceivable tweaks to a biomolecule can elicit one of the grandest conceivable consequences: directing the activation of neurons. The team has shown that the orientation of a single amino acid -- in this case, one of dozens found in the neuropeptide of a sea slug -- can dictate the likelihood that the peptide activates one neuron receptor versus another. Because different types of receptors are responsible for different neuronal activities, the finding points to another means by which a brain or nervous system can regulate the labyrinthine, life-sustaining communication among its cells.